[1] 王静超, 马军, 韩宏大. 探讨气浮工艺的若干技术参数[J]. 中国给水排水, 2004, 20(6):22-24.
[2] 孙卫东, 孙潇, 孙晓雪, 等. 糖汁气浮提纯过程气泡的产生及破灭规律的研究[J]. 食品工业科技, 2007, 28(2):86-89.
[3] 杨勇, 王广丰, 刘龙. 气泡直径与气浮净水效果关系的分析[J]. 工业用水与废水, 2007, 38(4):18-20.
[4] 龚为进, 蔡建安, 周建鹏. 溶气气浮中颗粒疏水性能的测定[J]. 安徽工业大学学报:自然科学版, 2004, 21(1):164-167.
[5] Uddin S, Li Y, Mirnezami M, et al. Effect of particles on the electrical charge of gas bubbles in flotation[J]. Minerals Engineering, 2012, 36/38:160-167.
[6] Xu D, Ametov I, Grano S R. Detachment of coarse particles from oscillating bubbles:The effect of particle contact angle, shape and medium viscosity[J]. International Journal of Mineral Processing, 2011, 101(1/2/3/4): 50-57.
[7] Albijanic B, Amini E, Wightman E, et al. A relationship between the bubble-particle attachment time and the mineralogy of a copper-sulphide ore[J]. Minerals Engineering, 2011, 24(12):1335-1339.
[8] Albijanic B, Ozdemir O, Nguyen A V, et al. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation[J]. Advances in Colloid and Interface Science, 2010, 159(1):1-21.
[9] Nguyen A V, Evans G M. Attachment interaction between air bubbles and particles in froth flotation[J]. Experimental Thermal and Fluid Science, 2004, 24(5):381-385.
[10] Koh P T L, Schwarz M P, Zhu Y, et al. Development of CFD models of mineral flotation cells[C]∥CSIRO. Third international con-ference on CFD in the minerals and process industries. Melbourne:CSIRO, 2003:171-176.
[11] Lichter J, Potapov A V, Peaker R. The use of computational fluid-dynamics and discrete element modeling to understand the effect of cell size and inflow rate on flotation bank retention time distribution and mechanism performance[C]∥Canadian Institute of Mini-ng, Metallurgy and Petroleum. Proceedings of the 39th annual gene-ral meeting of Canadian mineral processing. Westmount:Canadian Institute of Mining, Metallurgy and Petroleum, 2009:473-496.
[12] Bakker C W, Meyer C J, Deglon D A. Numerical modeling of non-Newtonian fluids in a mechanical flotation cell[J]. Progress in Computational Fluid Dynamics, 2009, 9(6/7):308-315.
[13] 王静超, 马军. 气浮接触区气泡-颗粒碰撞效率模型研究[J]. 哈尔滨工业大学学报, 2006, 38(1):31-34.
[14] 王静超, 马军, 刘芳. 气浮接触区气泡-颗粒碰撞效率影响因素分析[J]. 工业水处理, 2008, 28(9):66-69.
[15] Firouzi M, Nguyen A V, Hashemabadi S H. The effect of microhy-drodynamics on bubble-particle collision interaction[J]. Minerals Engineering, 2011, 24(9):973-986.
[16] 吴秋丽, 王毅力, 郭瑾珑, 等. 溶气气浮过程动力学模型的分形观[J]. 环境污染治理技术与设备, 2005, 6(5):29-34.
[17] Sarrot V, Guiraud P, Legendre D. Determination of the collision frequency between bubbles and particles in flotation[J]. Chemical Engineering Science, 2005, 60(22):6107-6117.
[18] Huang Z, Legendre D, Guiraud P. Effect of interface contamination on particle-bubble collision[J]. Chemical Engineering Science, 2012, 68(1):1-18.
[19] Nguyen C M, Nguyen A V, Miller J D. Computational validation of the Generalized Sutherland Equation for bubble-particle encounter efficiency in flotation[J]. International Journal of Mineral Processing, 2006, 81(3):141-148.
[20] Liu T Y, Schwarz M P. CFD-based modelling of bubble-particle collision efficiency with mobile bubble surface in a turbulent environment[J]. International Journal of Mineral Processing, 2009, 90(1/2/3/4):45-55.
[21] Liu T Y, Schwarz M P. CFD-based multiscale modeling of bubble-particle collision efficiency in a turbulent flotation cell[J]. Chemical Engineering Science, 2009, 64(24):5287-5301.
[22] Koh P T L, Schwarz M P. CFD modelling of bubble-particle attachments in flotation cells[J]. Minerals Engineering, 2006, 19(6/7/ 8):619-626.
[23] Koh P T L, Manichan M, Schwarz M P. CFD simulation of bubble-particle collisions in mineral flotation cells[J]. Minerals Enginee-ring, 2000, 13(14/15):1455-1463.
[24] Koh P T L, Schwarz M P. CFD models of microcell and Jameson flotation cells[C]∥CSIRO. Proceedings of seventh international conference on CFD in the minerals and process industries.Mel-bourne:CSIRO, 2009: 1-5.
[25] Nguyen A V, Ralston J, Schulze H J. On modelling of bubble-particle attachment probability in flotation[J]. Int. J. Miner. Process., 1998, 53(4):225-249.
[26] Wierink G, Heiskanen K. Modelling bubble-particle interaction with dynamic surface tension[J]. Minerals Engineering, 2010, 23(11/ 12/13):973-978.
[27] Evans G M, Doroodchi E, Lane G L, et al. Mixing and gas dispersion in mineral flotation cells[J]. Chemical Engineering Research and Design, 2008, 86(12):1350-1362.
[28] Wang W, Zhou Z, Nandakumar K, et al. Attachment of individual particles to a stationary air bubble in model systems[J]. Interna-tional Journal of Mineral Processing, 2003, 68(1/2/3/4):47-69.
[29] Koh P T L, Schwarz M P. CFD modelling of bubble-particle collision rates and efficiencies in a flotation cell[J]. Minerals Engineering, 2003, 16(11):1055-1059.
[30] Verrelli D I, Koh P T L, Bruckard W J, et al. Variations in the induction period for particle-bubble attachment[J]. Minerals Engi-neering, 2012, 36/37/38: 219-230.
[31] Maxwell R, Ata S, Wanless E J, et al. Computer simulations of particle-bubble interactions and particle sliding using Discrete Element Method[J]. Journal of Colloid and Interface Science, 2012, 38(1):1-10.
[32] Koh P T L, Schwarz M P. Modelling attachment rates of multi-sized bubbles with particles in a flotation cell[J]. Minerals Engineering, 2008, 21(12/13/14):989-993.
[33] Verrelli D I, Koh P T L, Nguyen A V. Particle-bubble interaction and attachment in flotation[J]. Chemical Engineering Science, 2011, 66(23):5910-5921. |