1 |
BEUN J J, HENDRIKS A, VAN LOOSDRECHT M C M,et al. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 1999, 33(10):2283-2290. doi: 10.1016/s0043-1354(98)00463-1
|
2 |
DE KREUK M K, VAN LOOSDRECHT M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2004, 49(11/12):9-17. doi: 10.2166/wst.2004.0792
|
3 |
MARTÍN H, IVANOVA N, KUNIN V,et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities[J]. Nature Biotechnology, 2006, 24(10):1263-1269. doi: 10.1038/nbt1247
|
4 |
何瑜. 生物除磷颗粒污泥系统特性及磷回收研究[D]. 扬州:扬州大学,2022.
|
|
HE Yu. Study on characterization of biological phosphorus removal granular sludge system and phosphorus recovery[D]. Yangzhou:Yangzhou University,2022.
|
5 |
BARR J J, COOK A E, BOND P L. Granule formation mechanisms within an aerobic wastewater system for phosphorus removal[J]. Applied and Environmental Microbiology, 2010, 76(22):7588-7597. doi: 10.1128/aem.00864-10
|
6 |
王然登. SBR生物除磷系统中颗粒污泥的形成及其特性研究[D]. 哈尔滨:哈尔滨工业大学,2015.
|
|
WANG Randeng. Formation and characteristics of the granules formed in biological phosphorus removal SBR system[D]. Harbin:Harbin Institute of Technology,2015.
|
7 |
HENRIET O, MEUNIER C, HENRY P,et al. Improving phosphorus removal in aerobic granular sludge processes through selective microbial management[J]. Bioresource Technology, 2016, 211:298-306. doi: 10.1016/j.biortech.2016.03.099
|
8 |
WU Changyong, PENG Yongzhen, WANG Shuying,et al. Enhanced biological phosphorus removal by granular sludge:From macro- to micro-scale[J]. Water Research, 2010, 44(3):807-814. doi: 10.1016/j.watres.2009.10.028
|
9 |
李志华,张玉蓉,杨帆,等. 除磷颗粒污泥系统中不同粒径颗粒的理化特性分析[J]. 环境科学,2012,33(4):1299-1305.
|
|
LI Zhihua, ZHANG Yurong, YANG Fan,et al. Physicochemical characteristics of granules with different size in a granular sludge system for phosphorus removal[J]. Environmental Science,2012,33(4):1299-1305.
|
10 |
OEHMEN A, ZENG R J, YUAN Zhiguo,et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering, 2005, 91(1):43-53. doi: 10.1002/bit.20480
|
11 |
LIU Hongbo, XIAO Hang, HUANG Shuai,et al. Aerobic granules cultivated and operated in continuous-flow bioreactor under particle-size selective pressure[J]. Journal of Environmental Sciences, 2014, 26(11):2215-2221. doi: 10.1016/j.jes.2014.09.004
|
12 |
SARVAJITH M, NANCHARAIAH Y V. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing[J]. Science of the Total Environment, 2022, 823:153643. doi: 10.1016/j.scitotenv.2022.153643
|
13 |
LOCHMATTER S, HOLLIGER C. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon,nitrogen,and phosphorous[J]. Water Research, 2014, 59:58-70. doi: 10.1016/j.watres.2014.04.011
|
14 |
王景峰. 好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究[D]. 天津:天津大学,2006.
|
|
WANG Jingfeng. Study on nitrogen,phosphate removal of aerobic granular sludge and granular sludge membrane bioreactor[D]. Tianjin:Tianjin University,2006.
|
15 |
LI Haisong, WEN Yue, CAO Asheng,et al. The influence of multivalent cations on the flocculation of activated sludge with different sludge retention times[J]. Water Research, 2014, 55:225-232. doi: 10.1016/j.watres.2014.02.014
|
16 |
ANGELA M, BÉATRICE B, MATHIEU S. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12):3776-3786. doi: 10.1016/j.watres.2011.04.031
|
17 |
TOJA ORTEGA S, VAN DEN BERG L, PRONK M,et al. Hydrolysis capacity of different sized granules in a full-scale aerobic granular sludge(AGS) reactor[J]. Water Research X, 2022, 16:100151. doi: 10.1016/j.wroa.2022.100151
|
18 |
徐伟锋,陈银广,张芳,等. 污泥龄对A/A/O工艺反硝化除磷的影响[J]. 环境科学,2007,28(8):1693-1696.
|
|
XU Weifeng, CHEN Yinguang, ZHANG Fang,et al. Effect of SRT on denitrifying phosphorus removal in A/A/O process[J]. Environmental Science,2007,28(8):1693-1696.
|
19 |
王进. 生物除磷影响因素试验研究[D]. 武汉:武汉理工大学,2011.
|
|
WANG Jin. Study on influence factors of biological phosphorus removal[D]. Wuhan:Wuhan University of Technology,2011.
|
20 |
LOPEZ C, PONS M N, MORGENROTH E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal[J]. Water Research, 2006, 40(8):1519-1530. doi: 10.1016/j.watres.2006.01.040
|
21 |
RANDALL A A, LIU Yanhua. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal[J]. Water Research, 2002, 36(14):3473-3478. doi: 10.1016/s0043-1354(02)00047-7
|
22 |
李冬,刘博,王文琪,等. 污泥龄对除磷亚硝化颗粒系统的影响[J]. 环境科学,2019,40(11):5048-5056.
|
|
LI Dong, LIU Bo, WANG Wenqi,et al. Effects of solid retention time on the phosphorus removal and nitrosation granules system[J]. Environmental Science,2019,40(11):5048-5056.
|
23 |
乐星星,顾向阳. 亚硝酸盐对EBPR工艺除磷效率的影响[J]. 南京农业大学学报,2017,40(2):266-272.
|
|
LE Xingxing, GU Xiangyang. Effects of nitrite on phosphorus removal rate during EBPR process[J]. Journal of Nanjing Agricultural University,2017,40(2):266-272.
|
24 |
SAITO T, BRDJANOVIC D, VAN LOOSDRECHT M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Water Research, 2004, 38(17):3760-3768. doi: 10.1016/j.watres.2004.05.023
|
25 |
彭永臻,吴蕾,马勇,等. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学,2010,31(2):273-281.
|
|
PENG Yongzhen, WU Lei, MA Yong,et al. Advances:Granulation mechanism,characteristics and application of aerobic sludge granules[J]. Environmental Science,2010,31(2):273-281.
|
26 |
相延铮,何成达,朱腾义,等. 碳源对除磷颗粒污泥除污效能和微生物特性的影响[J]. 工业水处理,2023,43(12):89-95.
|
|
XIANG Yanzheng, HE Chengda, ZHU Tengyi,et al. Effect of carbon source on removal efficiency and microbial characteristics of phosphorus removal granular sludge[J]. Industrial Water Treatment,2023,43(12):89-95.
|
27 |
WACHTMEISTER A, KUBA T, VAN LOOSDRECHT M C M,et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Water Research, 1997, 31(3):471-478. doi: 10.1016/s0043-1354(96)00281-3
|