1 |
LUAN Xiao, ZHANG Hong, TIAN Zhe,et al. Microbial community functional structure in an aerobic biofilm reactor:Impact of streptomycin and recovery[J]. Chemosphere, 2020, 255:127032. doi: 10.1016/j.chemosphere.2020.127032
|
2 |
SIM W J, LEE J W, LEE E S,et al. Occurrence and distribution of pharmaceuticals in wastewater from households,livestock farms,hospitals and pharmaceutical manufactures[J]. Chemosphere, 2011, 82(2):179-186. doi: 10.1016/j.chemosphere.2010.10.026
|
3 |
LARSSON D G. Pollution from drug manufacturing:Review and perspectives[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369(1656):20130571. doi: 10.1098/rstb.2013.0571
|
4 |
BOXALL A, LONG C. Veterinary medicines and the environment[J]. Environmental Toxicology and Chemistry, 2005, 24(4):759-760. doi: 10.1002/etc.5620240401
|
5 |
TAHERAN M, NAGHDI M, BRAR S K,et al. Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane[J]. Science of the Total Environment, 2017, 605/606:315-321. doi: 10.1016/j.scitotenv.2017.06.185
|
6 |
PULICHARLA R, DAS R K, BRAR S K,et al. Toxicity of chlortetracycline and its metal complexes to model microorganisms in wastewater sludge[J]. Science of the Total Environment, 2015, 532:669-675. doi: 10.1016/j.scitotenv.2015.05.140
|
7 |
HUANG Xu, ZHENG Jialun, LIU Chaoxiang,et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands:Effect of hydraulic flow direction and substrate type[J]. Chemical Engineering Journal, 2017, 308:692-699. doi: 10.1016/j.cej.2016.09.110
|
8 |
LI Xiaoming, CHEN Hongbo, YANG Qi,et al. Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime[J]. Chemosphere, 2014, 105:75-81. doi: 10.1016/j.chemosphere.2013.12.043
|
9 |
IZADI P, IZADI P, ELDYASTI A. Evaluation of PAO adaptability to oxygen concentration change:Development of stable EBPR under stepwise low-aeration adaptation[J]. Chemosphere, 2022, 286(Pt 2):131778. doi: 10.1016/j.chemosphere.2021.131778
|
10 |
IZADI P, IZADI P, ELDYASTI A. A review of biochemical diversity and metabolic modeling of EBPR process under specific environmental conditions and carbon source availability[J]. Journal of Environmental Management, 2021, 288:112362. doi: 10.1016/j.jenvman.2021.112362
|
11 |
WELLES L, TIAN W D, SAAD S,et al. Accumulibacter clades Type Ⅰ and Ⅱ performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83:354-366. doi: 10.1016/j.watres.2015.06.045
|
12 |
REN Nanqi, KANG Han, WANG Xiuheng,et al. Short-term effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system[J]. Frontiers of Environmental Science & Engineering in China, 2011, 5(2):277-282. doi: 10.1007/s11783-010-0226-x
|
13 |
ZHAO Weihua, BI Xuejun, PENG Yongzhen,et al. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera:Metabolic mechanisms,applications and influencing factors[J]. Chemosphere, 2022, 307(Pt 1):135675. doi: 10.1016/j.chemosphere.2022.135675
|
14 |
OEHMEN A, LEMOS P, CARVALHO G,et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water Research, 2007, 41(11):2271-2300. doi: 10.1016/j.watres.2007.02.030
|
15 |
CHEN A, CHEN Y, DING C,et al. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal[J]. RSC Advances, 2015, 5(73):59326-59334. doi: 10.1039/c5ra08434b
|
16 |
LONG Sha, YANG Yongkui, PAVLOSTATHIS S G,et al. Effect of sulfamethoxazole and oxytetracycline on enhanced biological phosphorus removal and bacterial community structure[J]. Bioresource Technology, 2021, 319:124067. doi: 10.1016/j.biortech.2020.124067
|
17 |
NIVEDHITA S, SHYNI JASMIN P, SARVAJITH M,et al. Effects of oxytetracycline on aerobic granular sludge process:Granulation,biological nutrient removal and microbial community structure[J]. Chemosphere, 2022, 307(Pt 4):136103. doi: 10.1016/j.chemosphere.2022.136103
|
18 |
LIU Hang, YANG Yongkui, GE Yanhui,et al. Interaction between common antibiotics and a Shewanella strain isolated from an enhanced biological phosphorus removal activated sludge system[J]. Bioresource Technology, 2016, 222:114-122. doi: 10.1016/j.biortech.2016.09.096
|
19 |
ALBERTSEN M, SAUNDERS A M, NIELSEN K L,et al. Metagenomes obtained by ‘deep sequencing’:what do they tell about the enhanced biological phosphorus removal communities?[J]. Water Science and Technology, 2013, 68(9):1959-1968. doi: 10.2166/wst.2013.441
|
20 |
SMOLDERS G J, VAN DER MEIJ J, VAN LOOSDRECHT M C,et al. Model of the anaerobic metabolism of the biological phosphorus removal process:Stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994, 43(6):461-470. doi: 10.1002/bit.260430605
|
21 |
FERNANDEZ-FONTAINA E, GOMES I B, AGA D S,et al. Biotransformation of pharmaceuticals under nitrification,nitratation and heterotrophic conditions[J]. Science of the Total Environment, 2016, 541:1439-1447. doi: 10.1016/j.scitotenv.2015.10.010
|
22 |
CETECIOGLU Z, INCE B, INCE O,et al. Acute effect of erythromycin on metabolic transformations of volatile fatty acid mixture under anaerobic conditions[J]. Chemosphere, 2015, 124:129-135. doi: 10.1016/j.chemosphere.2014.12.004
|
23 |
CHEN Yinguang, RANDALL A A, MCCUE T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Research, 2004, 38(1):27-36. doi: 10.1016/j.watres.2003.08.025
|
24 |
KATSOU E, ALVARINO T, MALAMIS S,et al. Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesses[J]. Chemical Engineering Journal, 2016, 295:509-517. doi: 10.1016/j.cej.2016.01.012
|
25 |
YI Kaixin, WANG Dongbo, YANG Qi,et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. The Science of the Total Environment, 2017, 605/606:368-375. doi: 10.1016/j.scitotenv.2017.06.215
|
26 |
WANG Jiaxin, ZHANG Chiqian, LI Ping,et al. Bioaugmentation with Tetrasphaera to improve biological phosphorus removal from anaerobic digestate of swine wastewater[J]. Bioresource Technology, 2023, 373:128744. doi: 10.1016/j.biortech.2023.128744
|
27 |
全桂军. Fe2+协同生物除磷过程中细胞内外磷的代谢及微生物学机制[D]. 合肥:安徽建筑大学,2018.
|
|
QUAN Guijun. Microbiological mechanism and metabolism of phosphorus in the interior and exterior of microbial cells during the process of Fe2+ synergistic biological phosphorus removal[D]. Hefei:Anhui Jianzhu University,2018.
|
28 |
CHENG Long, WEI Mingyu, HU Qixing,et al. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure:Performance,granulation mechanism,and microbial successions[J]. Journal of Hazardous Materials, 2023, 454:131472. doi: 10.1016/j.jhazmat.2023.131472
|
29 |
SINGH S, DATTA S, NARAYANAN K B,et al. Bacterial exo-polysaccharides in biofilms:Role in antimicrobial resistance and treatments[J]. Journal,Genetic Engineering & Biotechnology, 2021, 19(1):140. doi: 10.1186/s43141-021-00242-y
|
30 |
MA Juan, WANG Fangjun, TIAN Wenqing,et al. Effects of long-term exposure to ciprofloxacin on the performance of an EBPR and its microbial structure[J]. SSRN Electronic Journal, 2022. DOI: 10.2139/ssrn.4078632 .
|
31 |
杨鹤,王少坡,张铁凡,等. 酪蛋白水解物碳源SBR生物除磷系统启动[J]. 工业水处理,2021,41(2):52-57.
|
|
YANG He, WANG Shaopo, ZHANG Tiefan,et al. Start-up of sodium casein hydrolysate carbon source SBR biological phosphorus removal system[J]. Industrial Water Treatment,2021,41(2):52-57.
|