| 1 | Li Yueyun ,  Cope H A ,  Rahman S M , et al.  Toward better understanding of EBPR systems via linking Raman-based phenotypic profiling with phylogenetic diversity[J]. Environmental Science & Technology, 2018, 52 (15): 8596- 8606. URL
 | 
																													
																						| 2 | Zheng Xiongliu ,  Sun Peide ,  Han Jingyi , et al.  Inhibitory factors affecting the process of enhanced biological phosphorus removal(EBPR):A mini-review[J]. Process Biochemistry, 2014, 49 (12): 2207- 2213. URL
 | 
																													
																						| 3 | Oehmen A ,  Lemos P C ,  Carvalho G , et al.  Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water Research, 2007, 41 (11): 2271- 2300. URL
 | 
																													
																						| 4 | Stanković V ,  Božić D ,  Gorgievski M , et al.  Heavy metal ions adsorption from mine waters by sawdust[J]. Chemical Industry and Chemical Engineering Quarterly, 2009, 15 (4): 237- 249. URL
 | 
																													
																						| 5 | 贾利涛, 陈洪波, 李小明, 等.  Zn2+对SBR单级好氧模式生物除磷性能的影响[J]. 中国环境科学, 2014, 34 (9): 2266- 2272. URL
 | 
																													
																						| 6 | 国家环境保护总局.  水和废水监测分析方法[M]. 4版 北京: 中国环境科学出版社, 2002: 211- 246. | 
																													
																						| 7 | Zhao Q ,  Yu M ,  Zhang X , et al.  Intracellularly stored polysulfur maintains homeostasis of pH and provides bioenergy for phosphorus metabolism in the sulfur-associated enhanced biological phosphorus removal(SEBPR) process[J]. Chemosphere, 2019, 235, 211- 219. URL
 | 
																													
																						| 8 | Chen Yinguang ,  Chen Hong ,  Zheng Xiong , et al.  The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms[J]. Journal of Hazardous Materials, 2012, 239/240, 88- 94. URL
 | 
																													
																						| 9 | Ma Jingyun ,  Quan Xiangchun ,  Si Xiurong , et al.  Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms[J]. Bioresource Technology, 2013, 149, 346- 352. URL
 | 
																													
																						| 10 | Oehmen A ,  Keller-Lehmann B ,  Zeng R J , et al.  Optimisation of polyβ-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070 (1/2): 131- 136. URL
 | 
																													
																						| 11 | Pijuan M ,  Saunders A M ,  Guisasola A , et al.  Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source[J]. Biotechnology and Bioengineering, 2004, 85 (1): 56- 67. URL
 | 
																													
																						| 12 | 任志群.纳米ZnO对污水生物脱氮除磷系统影响的研究[D].哈尔滨: 哈尔滨工业大学, 2013. | 
																													
																						| 13 | Wang D ,  Lin Z ,  Wang T , et al.  Where does the toxicity of metal oxide nanoparticles come from:The nanoparticles, the ions, or a combination of both?[J]. Journal of Hazardous Materials, 2016, 308, 328- 334. URL
 | 
																													
																						| 14 | 李静, 张剑, 赵永祥.  金属离子对蛋白酶作用的研究进展[J]. 日用化学工业, 2019, 47 (6): 345- 351. URL
 | 
																													
																						| 15 | Zheng Xiong ,  Yang Lan ,  Shen Qiuting , et al.  Evaluation of zinc oxide nanoparticles-induced effects on nitrogen and phosphorus removal from real and synthetic municipal wastewater[J]. Industrial & Engineering Chemistry Research, 2019, 58, 7929- 7936. URL
 | 
																													
																						| 16 | 王未青.纳米氧化锌对污水生物除磷作用及微生物群落的影响[D].哈尔滨: 哈尔滨工业大学, 2015. URL
 |