| 1 | Sopaj F ,  Rodrigo M A ,  Oturan N , et al.  Influence of the anode materials on the electrochemical oxidation Efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin[J]. Chemical Engineering Journal, 2015, 262:286- 294. doi: 10.1016/j.cej.2014.09.100
 | 
																													
																						| 2 | 肖鹏伟. TiO2-石墨复合电极类电Fenton及阳极氧化降解四环素性能研究[D].济南:山东大学, 2018. URL
 | 
																													
																						| 3 | Yahiaoui I ,  Aissani-Benissad F ,  Madi K , et al.  Electrochemical pretreatment combined with biological treatment for the degradation of methylene blue dye:Pb/PbO2 electrode and modeling-optimization through central composite design[J]. Industrial & Engineering Chemistry Research, 2013, 52 (42): 14743- 14751. | 
																													
																						| 4 | Aquino J M ,  Pereira G F ,  Rocha-Filho R C , et al.  Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode[J]. Journal of Hazardous Materials, 2011, 192 (3): 1275- 1282. doi: 10.1016/j.jhazmat.2011.06.039
 | 
																													
																						| 5 | Lei L ,  Fang L M ,  Zhai L F , et al.  Anodic oxidationassisted O2 oxidation of phenol catalyzed by Fe3O4 at low voltage[J]. Electrochimica Acta, 2018, 261:394- 401. doi: 10.1016/j.electacta.2017.12.155
 | 
																													
																						| 6 | Sun M ,  Liu Y ,  Xiang W , et al.  Electricity-induced catalytic oxidation of RhB by O2 at a graphite anode[J]. Electrochimica Acta, 2015, 158:314- 320. doi: 10.1016/j.electacta.2015.01.156
 | 
																													
																						| 7 | Wang Q ,  Tian S L ,  Ning P .  Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene[J]. Industrial & Engineering Chemistry Research, 2014, 53 (2): 643- 649. URL
 | 
																													
																						| 8 | Wang Q ,  Tian S L ,  Long J , et al.  Use of Fe(Ⅱ)Fe(Ⅲ)-LDHs prepared by co-precipitation method in a heterogeneous-Fenton process for degradation of Methylene Blue[J]. Catalysis Today, 2014, 224:41- 48. doi: 10.1016/j.cattod.2013.11.031
 | 
																													
																						| 9 | Ndolomingo M J ,  Meijboom R .  Kinetic analysis of catalytic oxidation of methylene blue over γ-Al2O3 supported copper nanoparticles[J]. Applied Catalysis A:General, 2015, 506:33- 43. doi: 10.1016/j.apcata.2015.08.036
 | 
																													
																						| 10 | Liao Y H B ,  Wang J X ,  Lin J S , et al.  Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye[J]. Catalysis Today, 2011, 174 (1): 148- 159. URL
 | 
																													
																						| 11 | Li Y ,  Yang S G ,  Sun C , et al.  Aqueous photofate of crystal violet under simulated and natural solar irradiation:Kinetics, products, and pathways[J]. Water Research, 2016, 88:173- 183. doi: 10.1016/j.watres.2015.10.007
 | 
																													
																						| 12 | Fan H J ,  Huang S T ,  Chung W H , et al.  Degradation pathways of crystal violet by Fenton and Fenton-like systems:Condition optimization and intermediate separation and identification[J]. Journal of Hazardous Materials, 2009, 171 (1/2/3): 1032- 1044. URL
 | 
																													
																						| 13 | He H ,  Yang S G ,  Yu K , et al.  Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions[J]. Journal of Hazardous Materials, 2010, 173 (1/2/3): 393- 400. URL
 | 
																													
																						| 14 | Rajalakshmi S ,  Pitchaimuthu S ,  Kannan N , et al.  Enhanced photocatalytic activity of metal oxides/β-cyclodextrin nanocomposites for decoloration of Rhodamine B dye under solar light irradiation[J]. Applied Water Science, 2017, 7 (1): 115- 127. doi: 10.1007/s13201-014-0223-5
 |