1 |
Sopaj F , Rodrigo M A , Oturan N , et al. Influence of the anode materials on the electrochemical oxidation Efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin[J]. Chemical Engineering Journal, 2015, 262:286- 294.
doi: 10.1016/j.cej.2014.09.100
|
2 |
肖鹏伟. TiO2-石墨复合电极类电Fenton及阳极氧化降解四环素性能研究[D].济南:山东大学, 2018.
URL
|
3 |
Yahiaoui I , Aissani-Benissad F , Madi K , et al. Electrochemical pretreatment combined with biological treatment for the degradation of methylene blue dye:Pb/PbO2 electrode and modeling-optimization through central composite design[J]. Industrial & Engineering Chemistry Research, 2013, 52 (42): 14743- 14751.
|
4 |
Aquino J M , Pereira G F , Rocha-Filho R C , et al. Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode[J]. Journal of Hazardous Materials, 2011, 192 (3): 1275- 1282.
doi: 10.1016/j.jhazmat.2011.06.039
|
5 |
Lei L , Fang L M , Zhai L F , et al. Anodic oxidationassisted O2 oxidation of phenol catalyzed by Fe3O4 at low voltage[J]. Electrochimica Acta, 2018, 261:394- 401.
doi: 10.1016/j.electacta.2017.12.155
|
6 |
Sun M , Liu Y , Xiang W , et al. Electricity-induced catalytic oxidation of RhB by O2 at a graphite anode[J]. Electrochimica Acta, 2015, 158:314- 320.
doi: 10.1016/j.electacta.2015.01.156
|
7 |
Wang Q , Tian S L , Ning P . Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene[J]. Industrial & Engineering Chemistry Research, 2014, 53 (2): 643- 649.
URL
|
8 |
Wang Q , Tian S L , Long J , et al. Use of Fe(Ⅱ)Fe(Ⅲ)-LDHs prepared by co-precipitation method in a heterogeneous-Fenton process for degradation of Methylene Blue[J]. Catalysis Today, 2014, 224:41- 48.
doi: 10.1016/j.cattod.2013.11.031
|
9 |
Ndolomingo M J , Meijboom R . Kinetic analysis of catalytic oxidation of methylene blue over γ-Al2O3 supported copper nanoparticles[J]. Applied Catalysis A:General, 2015, 506:33- 43.
doi: 10.1016/j.apcata.2015.08.036
|
10 |
Liao Y H B , Wang J X , Lin J S , et al. Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye[J]. Catalysis Today, 2011, 174 (1): 148- 159.
URL
|
11 |
Li Y , Yang S G , Sun C , et al. Aqueous photofate of crystal violet under simulated and natural solar irradiation:Kinetics, products, and pathways[J]. Water Research, 2016, 88:173- 183.
doi: 10.1016/j.watres.2015.10.007
|
12 |
Fan H J , Huang S T , Chung W H , et al. Degradation pathways of crystal violet by Fenton and Fenton-like systems:Condition optimization and intermediate separation and identification[J]. Journal of Hazardous Materials, 2009, 171 (1/2/3): 1032- 1044.
URL
|
13 |
He H , Yang S G , Yu K , et al. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions[J]. Journal of Hazardous Materials, 2010, 173 (1/2/3): 393- 400.
URL
|
14 |
Rajalakshmi S , Pitchaimuthu S , Kannan N , et al. Enhanced photocatalytic activity of metal oxides/β-cyclodextrin nanocomposites for decoloration of Rhodamine B dye under solar light irradiation[J]. Applied Water Science, 2017, 7 (1): 115- 127.
doi: 10.1007/s13201-014-0223-5
|