1 |
LIU Hang, WANG Chengyin, WANG Guoxiu. Photocatalytic advanced oxidation processes for water treatment:Recent advances and perspective[J]. Chemistry,an Asian Journal, 2020, 15(20):3239-3253. doi: 10.1002/asia.202000895
|
2 |
ZHANG Minna, TANG Zhenwu, YIN Hongmin,et al. Concentrations,distribution and risk of polycyclic aromatic hydrocarbons in sediments from seven major river basins in China over the past 20 years[J]. Journal of Environmental Management, 2021, 280:111717. doi: 10.1016/j.jenvman.2020.111717
|
3 |
|
|
DING Rui, ZHAO Feng. Intimate coupling of photocatalysis and biodegradation to synchronously degrade pollutants[J]. Progress in Chemistry, 2017, 29(9):1154-1158. doi: 10.7536/PC170414
|
4 |
XIONG Jianhua, GUO Shuocheng, ZHAO Tianyu,et al. Degradation of methylene blue by intimate coupling photocatalysis and biodegradation with bagasse cellulose composite carrier[J]. Cellulose, 2020, 27(6):3391-3404. doi: 10.1007/s10570-020-02995-0
|
5 |
CHEN Shan, YUAN Mingzhe, FENG Wenbo,et al. Catalytic degradation mechanism of sulfamethazine via photosynergy of monoclinic BiVO 4 and microalgae under visible-light irradiation[J]. Water Research, 2020, 185:116220. doi: 10.1016/j.watres.2020.116220
|
6 |
ZHONG Nianbing, YUAN Jilin, LUO Yihao,et al. Intimately coupling photocatalysis with phenolics biodegradation and photosynthesis[J]. Chemical Engineering Journal, 2021, 425:130666. doi: 10.1016/j.cej.2021.130666
|
7 |
QIN Zhirui, ZHAO Zhenhua, JIAO Wentao,et al. Coupled photocatalytic-bacterial degradation of pyrene:Removal enhancement and bacterial community responses[J]. Environmental Research, 2020, 183:109135. doi: 10.1016/j.envres.2020.109135
|
8 |
QIN Zhirui, ZHAO Zhenhua, JIAO Wentao,et al. Phenanthrene removal and response of bacterial community in the combined system of photocatalysis and PAH-degrading microbial consortium in laboratory system[J]. Bioresource Technology, 2020, 301:122736. doi: 10.1016/j.biortech.2020.122736
|
9 |
GUO Qing, ZHOU Chuanyao, MA Zhibo,et al. Fundamentals of TiO 2 photocatalysis:Concepts,mechanisms,and challenges[J]. Advanced Materials, 2019, 31(50):1901997. doi: 10.1002/adma.201901997
|
10 |
DASS S, MUNEER M, GOPIDAS K R. Photocatalytic degradation of wastewater pollutants. Titanium-dioxide-mediated oxidation of polynuclear aromatic hydrocarbons[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1994, 77(1):83-88. doi: 10.1016/1010-6030(94)80011-1
|
11 |
REN Guangmin, HAN Hongtao, WANG Yixuan,et al. Recent advances of photocatalytic application in water treatment:A review[J]. Nanomaterials, 2021, 11(7):1804. doi: 10.3390/nano11071804
|
12 |
LONG Zeqing, LI Qiangang, WEI Ting,et al. Historical development and prospects of photocatalysts for pollutant removal in water[J]. Journal of Hazardous Materials, 2020, 395:122599. doi: 10.1016/j.jhazmat.2020.122599
|
13 |
田倩,吕勇,李晨光,等. g-C3N4的制备及其光催化降解诺氟沙星的机理及产物毒性研究[J]. 工业水处理,2022,42(11):84-93.
|
|
TIAN Qian, Yong LÜ, LI Chenguang,et al. Preparation of g-C3N4 and its photocatalytic degradation mechanism of norfloxacin and product toxicity evaluation[J]. Industrial Water Treatment,2022,42(11):84-93.
|
14 |
MARSOLEK M D, TORRES C I, HAUSNER M,et al. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor[J]. Biotechnology and Bioengineering, 2008, 101(1):83-92. doi: 10.1002/bit.21889
|
15 |
YU Mingliang, WANG Jiajia, TANG Lin,et al. Intimate coupling of photocatalysis and biodegradation for wastewater treatment:Mechanisms,recent advances and environmental applications[J]. Water Research, 2020, 175:115673. doi: 10.1016/j.watres.2020.115673
|
16 |
刘宏,庞族族,石林,等. 光催化降解喹诺酮类抗生素的研究进展[J]. 工业水处理,2023,43(10):34-41.
|
|
LIU Hong, PANG Zuzu, SHI Lin,et al. Research progress on photocatalytic degradation of quinolone antibiotics[J]. Industrial Water Treatment,2023,43(10):34-41.
|
17 |
GIMENO O, GARCÍA-ARAYA J F, BELTRÁN F J,et al. Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes[J]. Chemical Engineering Journal, 2016, 290:12-20. doi: 10.1016/j.cej.2016.01.022
|
18 |
MAHLALELA L C, CASADO C, MARUGÁN J,et al. Coupling biological and photocatalytic treatment of atrazine and tebuthiuron in aqueous solution[J]. Journal of Water Process Engineering, 2021, 40:101918. doi: 10.1016/j.jwpe.2021.101918
|
19 |
PÉREZ-OSORIO G, DEL ROCÍO HERNÁNDEZ-GÓMEZ F, ARRIOLA-MORALES J,et al. Blue dye degradation in an aqueous medium by a combined photocatalytic and bacterial biodegradation process[J]. Turkish Journal of Chemistry, 2020, 44(1):180-193. doi: 10.3906/kim-1902-33
|
20 |
ZHOU Dandan, XU Zhengxue, DONG Shanshan,et al. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types:Visible light vs. UV light[J]. Environmental Science & Technology, 2015, 49(13):7776-7783. doi: 10.1021/acs.est.5b00989
|
21 |
XIONG Houfeng, ZOU Donglei, ZHOU Dandan,et al. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation(ICPB)[J]. Chemical Engineering Journal, 2017, 316:7-14. doi: 10.1016/j.cej.2017.01.083
|
22 |
XIONG Houfeng, DONG Shuangshi, ZHANG Jun,et al. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor[J]. Water Research, 2018, 136:75-83. doi: 10.1016/j.watres.2018.02.061
|
23 |
YASMIN C, LOBNA E, MOUNA M,et al. New trend of Jebel Chakir landfill leachate pre-treatment by photocatalytic TiO 2/Ag nanocomposite prior to fermentation using Candida tropicalis strain[J]. International Biodeterioration & Biodegradation, 2020, 146:104829. doi: 10.1016/j.ibiod.2019.104829
|
24 |
ZHANG Huanjun, LIU Zhehao, LI Yi,et al. Intimately coupled TiO 2/g-C 3N 4 photocatalysts and in situ cultivated biofilms enhanced nitrate reduction in water[J]. Applied Surface Science, 2020, 503:144092. doi: 10.1016/j.apsusc.2019.144092
|
25 |
ZUO Wenlu, ZHANG Lei, ZHANG Zhidong,et al. Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes:A review[J]. Critical Reviews in Biotechnology, 2021, 41(2):273-299. doi: 10.1080/07388551.2020.1869689
|
26 |
WEN Donghui, LI Guozheng, XING Rui,et al. 2,4-DNT removal in intimately coupled photobiocatalysis:The roles of adsorption,photolysis,photocatalysis,and biotransformation[J]. Applied Microbiology & Biotechnology, 2012, 95:263-272. doi: 10.1007/s00253-011-3692-6
|
27 |
LI Guozheng, PARK S, RITTMANN B E. Developing an efficient TiO 2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation[J]. Water Research,, 2012, 46(19):6489-6496. doi: 10.1016/j.watres.2012.09.029
|
28 |
XIONG Jianhua, GUO Shuocheng,ZHAO,Tianyu,et al. Degradation of methylene blue by intimate coupling photocatalysis and biodegradation with bagasse cellulose composite carrier[J]. Cellulose, 2020, 27(6):3391-3401. doi: 10.1007/s10570-020-02995-0
|
29 |
ZHANG Xinying, WU Yan, XIAO Gao,et al. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C 3N 4-P25/photosynthetic bacteria composite[J]. Plos One, 2017, 12(3):e0172747. doi: 10.1371/journal.pone.0172747
|
30 |
CHI Dechao, SUN Dandan, YANG Zekang,et al. Bifunctional nest-like self-floating microreactor for enhanced photothermal catalysis and biocatalysis[J]. Environmental Science:Nano, 2019, 6(12):3551-3559. doi: 10.1039/c9en00968j
|
31 |
LI Fuqiang, LAN Xuefang, WANG Lili,et al. An efficient photocatalyst coating strategy for intimately coupled photocatalysis and biodegradation(ICPB):Powder spraying method[J]. Chemical Engineering Journal, 2020, 383:123092. doi: 10.1016/j.cej.2019.123092
|
32 |
ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons:Source,environmental impact,effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016, 25(1):107-123. doi: 10.1016/j.ejpe.2015.03.011
|
33 |
SHARMA B M, MELYMUK L, BHARAT G K,et al. Spatial gradients of polycyclic aromatic hydrocarbons(PAHs) in air,atmospheric deposition,and surface water of the Ganges River Basin[J]. Science of the Total Environment, 2018, 627:1495-1504. doi: 10.1016/j.scitotenv.2018.01.262
|
34 |
CHENG Hu, JI Rongting, BIAN Yongrong,et al. From macroalgae to porous graphitized nitrogen-doped biochars:Using aquatic biota to treat polycyclic aromatic hydrocarbons-contaminated water[J]. Bioresource Technology, 2020, 303:122947. doi: 10.1016/j.biortech.2020.122947
|
35 |
BOJES H K, POPE P G. Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons(PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas[J]. Regulatory Toxicology and Pharmacology, 2007, 47(3):288-295. doi: 10.1016/j.yrtph.2006.11.007
|
36 |
AL-TURKI A I. Microbial polycyclic aromatic hydrocarbons degradation in soil[J]. Research Journal of Environmental Toxicology, 2009, 3(1):1-8. doi: 10.3923/rjet.2009.1.8
|
37 |
CAI Haoyuan, SUN Lin, WANG Yameng,et al. Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn 3O 4/MnO 2-Ag 3PO 4 and functional bacteria under visible light irradiation[J]. Chemical Engineering Journal, 2019, 369:1078-1092. doi: 10.1016/j.cej.2019.03.143
|
38 |
WANG Can, LI Yunzhen, TAN Hang,et al. A novel microbe consortium,nano-visible light photocatalyst and microcapsule system to degrade PAHs[J]. Chemical Engineering Journal, 2019, 359:1065-1074. doi: 10.1016/j.cej.2018.11.077
|
39 |
SIMIC M, MORTON Z, HOFFMAN M Z, EBERT M. Reaction of hydroxyl and O - radicals with aromatic carboxylate anions in aqueous solutions[J]. The Journal of Physical Chemistry B, 1973, 77(9):1117-1120. doi: 10.1021/j100628a007
|
40 |
NGUYEN V H, PHAN THI L A, VAN LE Q,et al. Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons(PAHs) in water,soil and other sources[J]. Chemosphere, 2020, 260:127529. doi: 10.1016/j.chemosphere.2020.127529
|
41 |
YANG Xiaolong, CAI Haoyuan, BAO Mutai,et al. Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag 3PO 4 composites under visible light irradiation[J]. Chemical Engineering Journal, 2018, 334:355-376. doi: 10.1016/j.cej.2017.09.104
|
42 |
SHANKER U, JASSAL V, RANI M. Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes[J]. Journal of Environmental Management, 2017, 204:337-348. doi: 10.1016/j.jenvman.2017.09.015
|
43 |
GHOSAL D, GHOSH S, DUTTA T K,et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons(PAHs):A review[J]. Frontiers in Microbiology, 2016, 7:1369. doi: 10.3389/fmicb.2016.01369
|
44 |
MALLICK S, CHATTERJEE S, DUTTA T K. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid:Formation of trans-2,3-dioxo-5-(2’-hydroxyphenyl)-pent-4-enoic acid[J]. Microbiology, 2007, 153(7):2104-2115. doi: 10.1099/mic.0.2006/004218-0
|
45 |
GHOSAL D, CHAKRABORTY J, KHARA P,et al. Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD[J]. FEMS Microbiology Letters, 2010, 313(2):103-110. doi: 10.1111/j.1574-6968.2010.02129.x
|
46 |
IMAM A, KUMAR SUMAN S, KANAUJIA P K,et al. Biological machinery for polycyclic aromatic hydrocarbons degradation:A review[J]. Bioresource Technology, 2022, 343:126121. doi: 10.1016/j.biortech.2021.126121
|