1 |
李倩玮,王雨竹,张宇鑫,等. 生物矿化法制备纳米氧化铁及其对亚甲基蓝的吸附[J]. 工业水处理,2022,42(3):70-75.
|
|
LI Qianwei, WANG Yuzhu, ZHANG Yuxin,et al. Preparation of nano ferric oxide by biomineralization and its adsorption to methylene blue[J]. Industrial Water Treatment,2022,42(3):70-75.
|
2 |
LIU Guangyang, LI Lingyun, XU Donghui,et al. Metal-organic framework preparation using magnetic graphene oxide- β-cyclodextrin for neonicotinoid pesticide adsorption and removal[J]. Carbohydrate Polymers, 2017, 175:584-591. doi: 10.1016/j.carbpol.2017.06.074
|
3 |
WALLING C, AMARNATH K. Oxidation of mandelic acid by Fenton’s reagent[J]. Journal of the American Chemical Society, 1982, 104(5):1185-1189. doi: 10.1021/ja00369a005
|
4 |
WU Qitong. Wastewater treatment by enhanced H 2O 2-based advanced oxidation process(AOP) methods:A review[J]. Journal of Physics:Conference Series, 2022, 2152(1):012011. doi: 10.1088/1742-6596/2152/1/012011
|
5 |
JI Guangxue, SUN Shaohua, JIA Ruibao,et al. Study on the removal of humic acid by ultraviolet/persulfate advanced oxidation technology[J]. Environmental Science and Pollution Research, 2020, 27(21):26079-26090. doi: 10.1007/s11356-020-08894-y
|
6 |
|
|
Jilin NAN, XU Lusheng, XU Zehai,et al. Progress on wastewater treatment by heterogeneous electro-Fenton process[J]. Zhejiang Chemical Industry, 2017, 48(10):39-43. doi: 10.3969/j.issn.1006-4184.2017.10.012
|
7 |
|
|
FENG Ailing, WANG Yanni, XU Rong,et al. Progress of multifunctional metal-organic framework composites[J]. Journal of Functional Materials, 2018, 49(11):11061-11070. doi: 10.3969/j.issn.1001-9731.2018.11.010
|
8 |
LI Peng, CHENG Fangfang, XIONG Weiwei,et al. New synthetic strategies to prepare metal-organic frameworks[J]. Inorganic Chemistry Frontiers, 2018, 5(11):2693-2708. doi: 10.1039/c8qi00543e
|
9 |
YAGHI O M, LI Guangming, LI Hailian. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558):703-706. doi: 10.1038/378703a0
|
10 |
LI Shunli, XU Qiang. Metal-organic frameworks as platforms for clean energy[J]. Energy & Environmental Science, 2013, 6(6):1656-1683. doi: 10.1039/c3ee40507a
|
11 |
CHEN Maolong, FENG Yanying, WANG Siyuan,et al. Metal-organic frameworks with double channels for rapid and reversible adsorption of 1,2-ethylenediamine and gases[J]. ACS Applied Materials & Interfaces, 2020, 12(1):1412-1418. doi: 10.1021/acsami.9b20184
|
12 |
KANG Chenxia, MA Lin, CHEN Yucheng,et al. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors[J]. Chemical Engineering Journal, 2022, 427:131003. doi: 10.1016/j.cej.2021.131003
|
13 |
VALLET-REGÍ M, BALAS F, ARCOS D. Mesoporous materials for drug delivery[J]. Angewandte Chemie International Edition, 2007, 46(40):7548-7558. doi: 10.1002/anie.200604488
|
14 |
XIE Ruirui, YANG Peipei, LIU Jiamin,et al. Lanthanide-functionalized metal-organic frameworks based ratiometric fluorescent sensor array for identification and determination of antibiotics[J]. Talanta, 2021, 231:122366. doi: 10.1016/j.talanta.2021.122366
|
15 |
MASOUMI S, FARSHCHI TABRIZI F, SARDARIAN A R. Efficient tetracycline hydrochloride removal by encapsulated phosphotungstic acid(PTA) in MIL-53(Fe):Optimizing the content of PTA and recycling study[J]. Journal of Environmental Chemical Engineering, 2020, 8(1):103601. doi: 10.1016/j.jece.2019.103601
|
16 |
王雪亮. 电化学合成IRMOF-3及其检测TNP的性能研究[D]. 哈尔滨:哈尔滨理工大学,2018.
|
|
WANG Xueliang. Electrochemical synthesis of IRMOF-3 for detection of TNP[D]. Harbin:Harbin University of Science and Technology,2018.
|
17 |
ZHANG Huabin, WEI Jing, DONG Juncai,et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie International Edition, 2016, 55(46):14310-14314. doi: 10.1002/anie.201608597
|
18 |
QIN Lei, LI Zhaowen, XU Zehai,et al. Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation[J]. Applied Catalysis B:Environmental, 2015, 179:500-508. doi: 10.1016/j.apcatb.2015.06.001
|
19 |
GAO Mingkun, LIU Guangyang, GAO Yuhang,et al. Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions[J]. TrAC Trends in Analytical Chemistry, 2021, 137:116226. doi: 10.1016/j.trac.2021.116226
|
20 |
STOCK N, BISWAS S. Synthesis of metal-organic frameworks(MOFs):Routes to various MOF topologies,morphologies,and composites[J]. Chemical Reviews, 2012, 112(2):933-969. doi: 10.1021/cr200304e
|
21 |
KHOSRAVI A, MOKHTARI J, NAIMI-JAMAL M R,et al. Cu 2(BDC) 2(BPY)-MOF:An efficient and reusable heterogeneous catalyst for the aerobic Chan-Lam coupling prepared via ball-milling strategy[J]. RSC Advances, 2017, 7(73):46022-46027. doi: 10.1039/c7ra09772g
|
22 |
刘沛. LiMPO4(M=Fe,Mn)的离子热法合成、结构表征及性能研究[D]. 合肥:合肥工业大学,2012.
|
|
LIU Pei. Ionothermal synthesis and structural characterization of LiMPO4(M=Fe,Mn) cathode material and its electrochemical performance[D]. Hefei:Hefei University of Technology,2012.
|
23 |
张利军. 基于离子热法合成的MOFs在电化学传感中的应用[D]. 济南:山东大学,2021.
|
|
ZHANG Lijun. Application of MOFs synthesized by ionothermal method in electrochemical sensing[D]. Ji’nan:Shandong University,2021.
|
24 |
KLIMAKOW M, KLOBES P, THÜNEMANN A F,et al. Mechanochemical synthesis of metal-organic frameworks:A fast and facile approach toward quantitative yields and high specific surface areas[J]. Chemistry of Materials, 2010, 22(18):5216-5221. doi: 10.1021/cm1012119
|
25 |
FRIŠČIĆ T. New opportunities for materials synthesis using mechanochemistry[J]. Journal of Materials Chemistry, 2010, 20(36):7599-7605. doi: 10.1039/c0jm00872a
|
26 |
YUAN Wenbing, FRIŠČIĆ T, APPERLEY D,et al. High reactivity of metal-organic frameworks under grinding conditions:Parallels with organic molecular materials[J]. Angewandte Chemie International Edition, 2010, 49(23):3916-3919. doi: 10.1002/anie.200906965
|
27 |
SINGH N K, HARDI M, BALEMA V P. Mechanochemical synthesis of an yttrium based metal-organic framework[J]. Chemical Communications, 2013, 49(10):972-974. doi: 10.1039/c2cc36325a
|
28 |
LEE Yuri, KIM J, AHN W S. Synthesis of metal-organic frameworks:A mini review[J]. Korean Journal of Chemical Engineering, 2013, 30(9):1667-1680. doi: 10.1007/s11814-013-0140-6
|
29 |
YUE Xinxin, GUO Weilin, LI Xianghui,et al. Core-shell Fe 3O 4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of acid orange 7[J]. Environmental Science and Pollution Research, 2016, 23(15):15218-15226. doi: 10.1007/s11356-016-6702-5
|
30 |
WANG Chaohai, WANG Hongyu, LUO Rui,et al. Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate[J]. Chemical Engineering Journal, 2017, 330:262-271. doi: 10.1016/j.cej.2017.07.156
|
31 |
HU Longxing, DENG Guihua, LU Wencong,et al. Peroxymonosulfate activation by Mn 3O 4/metal-organic framework for degradation of refractory aqueous organic pollutant Rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8):1360-1372. doi: 10.1016/s1872-2067(17)62875-4
|
32 |
HUANG Lizhang, LIU Bingsi. Synthesis of a novel and stable reduced graphene oxide/MOF hybrid nanocomposite and photocatalytic performance for the degradation of dyes[J]. RSC Advances, 2016, 6(22):17873-17879. doi: 10.1039/c5ra25689e
|
33 |
LIANG Ruowen, JING Fenfen, SHEN Lijuan,et al. M@MIL-100(Fe)(M=Au,Pd,Pt) nanocomposites fabricated by a facile photodeposition process:Efficient visible-light photocatalysts for redox reactions in water[J]. Nano Research, 2015, 8(10):3237-3249. doi: 10.1007/s12274-015-0824-9
|
34 |
LIANG He, LIU Ruiping, HU Chengzhi,et al. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation[J]. Journal of Hazardous Materials, 2021, 406:124692. doi: 10.1016/j.jhazmat.2020.124692
|
35 |
LIANG He, LIU Ruiping, AN Xiaoqiang,et al. Bimetal-organic frameworks with coordinatively unsaturated metal sites for highly efficient Fenton-like catalysis[J]. Chemical Engineering Journal, 2021, 414:128669. doi: 10.1016/j.cej.2021.128669
|
36 |
石冬妮,李慧玲,滕然,等. Fe3O4基类Fenton催化剂的改性及应用研究进展[J]. 工业水处理,2022,43(7):41-52.
|
|
SHI Dongni, LI Huiling, TENG Ran,et al. Process in modification and application of Fe3O4-based Fenton-like catalysts[J]. Industrial Water Treatment,2022,43(7):41-52.
|
37 |
PU Mengjie, MA Yongwen, WAN Jinquan,et al. Activation performance and mechanism of a novel heterogeneous persulfate catalyst:Metal-organic framework MIL-53(Fe) with Fe Ⅱ/Fe Ⅲ mixed-valence coordinatively unsaturated iron center[J]. Catalysis Science & Technology, 2017, 7(5):1129-1140. doi: 10.1039/c6cy02355j
|
38 |
WU Qiangshun, YANG Hanpei, KANG Li,et al. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range:Acceleration of Fe(Ⅱ)/Fe(Ⅲ) cycle under visible light irradiation[J]. Applied Catalysis B:Environmental, 2020, 263:118282. doi: 10.1016/j.apcatb.2019.118282
|
39 |
|
|
XIE Yinde, CHEN Feng, HE Jianjun,et al. Recent advance in photo-Fenton reaction[J]. Photographic Science and Photochemistry, 2000, 18(4):357-365. doi: 10.3969/j.issn.1674-0475.2000.04.010
|
40 |
张春燕,刘哲语. CaFe2O4基复合光催化剂的制备及性能研究[J]. 工业水处理,2022,42(2):104-110.
|
|
ZHANG Chunyan, LIU Zheyu. Preparation and performance study of CaFe2O4-based composite photocatalysts[J]. Industrial Water Treatment,2022,42(2):104-110.
|
41 |
LI Xianghui, GUO Weilin, LIU Zhonghua,et al. Quinone-modified NH 2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A[J]. Journal of Hazardous Materials, 2017, 324:665-672. doi: 10.1016/j.jhazmat.2016.11.040
|
42 |
GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes(SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406:127083. doi: 10.1016/j.cej.2020.127083
|
43 |
朱梦婷,魏杰,张钱丽. Fe-MOFs用于吸附和芬顿降解水中污染物的研究进展[J]. 化工新型材料,2021,49(12):287-290.
|
|
ZHU Mengting, WEI Jie, ZHANG Qianli. Research progress on Fe-MOFs used in the adsorption and Fenton degradation of environmental pollutant[J]. New Chemical Materials,2021,49(12):287-290.
|
44 |
PU Mengjie, GUAN Zeyu, MA Yongwen,et al. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution[J]. Applied Catalysis A:General, 2018, 549:82-92. doi: 10.1016/j.apcata.2017.09.021
|
45 |
DING Yaobin, FU Libin, PENG Xueqin,et al. Copper catalysts for radical and nonradical persulfate based advanced oxidation processes:Certainties and uncertainties[J]. Chemical Engineering Journal, 2022, 427:131776. doi: 10.1016/j.cej.2021.131776
|
46 |
HAN Lijuan, KONG Yajie, YAN Tingjiang,et al. A new five-coordinated copper compound for efficient degradation of methyl orange and congo red in the absence of UV-visible radiation[J]. Dalton Transactions, 2016, 45(46):18566-18571. doi: 10.1039/c6dt03273g
|
47 |
LI Huanhuan, MA Yanjie, ZHAO Yanqin,et al. Synthesis and characterization of three cobalt(Ⅱ) coordination polymers with tetrabromoterephthalic acid and flexible bis(benzimidazole) ligands[J]. Transition Metal Chemistry, 2015, 40(1):21-29. doi: 10.1007/s11243-014-9885-y
|
48 |
WANG Xiaoxiao, YU Baoyi, VAN HECKE K,et al. Four cobalt(Ⅱ) coordination polymers with diverse topologies derived from flexible bis(benzimidazole) and aromatic dicarboxylic acids:Syntheses,crystal structures and catalytic properties[J]. RSC Advances, 2014, 4(106):61281-61289. doi: 10.1039/c4ra08138b
|
49 |
冯思思,武恩喜,白羽婷. Fe3O4/金属-有机框架复合材料合成及应用的研究进展[J]. 山西大学学报(自然科学版),2022,45(2):451-464.
|
|
FENG Sisi, WU Enxi, BAI Yuting. Research progress on syntheses and applications of Fe3O4/magnetic metal-organic framework composites[J]. Journal of Shanxi University(Natural Science Edition),2022,45(2):451-464.
|
50 |
NADAR S S, NILESH VARADAN O, SURESH S,et al. Recent progress in nanostructured magnetic framework composites(MFCs):Synthesis and applications[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91:653-677. doi: 10.1016/j.jtice.2018.06.029
|
51 |
LOHE M R, GEDRICH K, FREUDENBERG T,et al. Heating and separation using nanomagnet-functionalized metal-organic frameworks[J]. Chemical Communications, 2011, 47(11):3075-3077. doi: 10.1039/c0cc05278g
|
52 |
RICCO R, MALFATTI L, TAKAHASHI M,et al. Applications of magnetic metal-organic framework composites[J]. Journal of Materials Chemistry A, 2013, 1(42):13033-13045. doi: 10.1039/c3ta13140h
|
53 |
ZHANG Caihong, AI Lunhong, JIANG Jing. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of Rhodamine B under visible light[J]. Industrial & Engineering Chemistry Research, 2015, 54(1):153-163. doi: 10.1021/ie504111y
|
54 |
FU Huifen, SONG Xiaoxu, WU Lin,et al. Room-temperature preparation of MIL-88A as a heterogeneous photo-Fenton catalyst for degradation of Rhodamine B and bisphenol a under visible light[J]. Materials Research Bulletin, 2020, 125:110806. doi: 10.1016/j.materresbull.2020.110806
|
55 |
ZHONG Zhen, LI Min, FU Jinghao,et al. Construction of Cu-bridged Cu 2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid[J]. Chemical Engineering Journal, 2020, 395:125184. doi: 10.1016/j.cej.2020.125184
|
56 |
ZHAO Hongying, CHEN Ying, PENG Qiusheng,et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H 2O 2 and ·OH generation in solar photo-electro-Fenton process[J]. Applied Catalysis B:Environmental, 2017, 203:127-137. doi: 10.1016/j.apcatb.2016.09.074
|