| 1 | Pelissari C ,  Guivernau M ,  Viñas M , et al.  Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands[J]. Water Research, 2018, 141, 185- 195. doi: 10.1016/j.watres.2018.05.002
 | 
																													
																						| 2 | Gargallo S ,  Martín M ,  Oliver N , et al.  Sedimentation and resuspension modelling in free water surface constructed wetlands[J]. Ecological Engineering, 2017, 98, 318- 329. doi: 10.1016/j.ecoleng.2016.09.014
 | 
																													
																						| 3 | Wu Di ,  Yan Huyong ,  Shang Mingsheng , et al.  Water eutrophication evaluation based on semi-supervised classification: A case study in Three Gorges Reservoir[J]. Ecological Indicators, 2017, 81, 362- 372. doi: 10.1016/j.ecolind.2017.06.004
 | 
																													
																						| 4 | Liu Ying ,  Liu Xiaohui ,  Li Ke , et al.  Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism[J]. Science of The Total Environment, 2019, 652, 977- 988. doi: 10.1016/j.scitotenv.2018.10.313
 | 
																													
																						| 5 | Xu Shuhui ,  Zhou Sicong ,  Xing Liqun , et al.  Fate of organic micropollutants and their biological effects in a drinking water source treated by a field-scale constructed wetland[J]. Science of The Total Environment, 2019, 682, 756- 764. doi: 10.1016/j.scitotenv.2019.05.151
 | 
																													
																						| 6 | Flores L ,  García J ,  Pena R , et al.  Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment[J]. Science of The Total Environment, 2019, 659, 1567- 1576. doi: 10.1016/j.scitotenv.2018.12.348
 | 
																													
																						| 7 | 成水平, 王月圆, 吴娟.  人工湿地研究现状与展望[J]. 湖泊科学, 2019, 31 (6): 1489- 1498. URL
 | 
																													
																						| 8 | Vymazal J .  Constructed wetlands for wastewater treatment[J]. Encyclopedia of Ecology, 2019, 1, 14- 21. | 
																													
																						| 9 | 丁怡.  人工湿地在水质净化中的应用及研究进展[J]. 工业水处理, 2017, 37 (3): 6- 10. URL
 | 
																													
																						| 10 | Maillard J ,  Carrasco N ,  Schmitz-Afonso I , et al.  Comparison of soluble and insoluble organic matter in analogues of Titan's aerosols[J]. Earth and Planetary Science Letters, 2018, 495, 185- 191. doi: 10.1016/j.epsl.2018.05.014
 | 
																													
																						| 11 | 江梅, 邹兰, 李晓倩, 等.  我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36 (9): 3522- 3532. URL
 | 
																													
																						| 12 | 闫栋华.  人工湿地污水处理技术概况[J]. 科技资讯, 2018, 16 (1): 106- 109. URL
 | 
																													
																						| 13 | Sun Haishu ,  Xu Shengjun ,  Wu Shanghua , et al.  Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands[J]. Journal of Environmental Management, 2019, 246, 157- 163. URL
 | 
																													
																						| 14 | Ding Yi ,  Wang Wei ,  Liu Xingpo , et al.  Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology[J]. Bioresource Technology, 2016, 219, 757- 761. doi: 10.1016/j.biortech.2016.08.044
 | 
																													
																						| 15 | 仇付国, 徐艳秋, 许俊挺, 等.  人工湿地系统除磷影响因素研究进展[J]. 科技导报, 2017, 38 (9): 23- 29. URL
 | 
																													
																						| 16 | Temporetti P ,  Beamud G ,  Nichela D , et al.  The effect of pH on phosphorus sorbed from sediments in a river with a natural pH gradient[J]. Chemosphere, 2019, 228, 287- 299. doi: 10.1016/j.chemosphere.2019.04.134
 | 
																													
																						| 17 | 李寒, 蒋彬, 赵悬悬, 等.  水生蔬菜型人工湿地对蓝藻消化液中氮、磷的去除[J]. 中国给水排水, 2018, 34 (17): 63- 68. URL
 | 
																													
																						| 18 | 李燕萍, 夏晴晴, 程花, 等.  多层级生物操纵技术在人工湿地控制蓝藻的应用研究[J]. 安徽农业科学, 2019, 47 (15): 81- 84. URL
 | 
																													
																						| 19 | 钱燕萍, 赵楚, 田如男.  水生植物对藻类的化感作用研究进展[J]. 生物学杂志, 2018, 35 (6): 95- 97. URL
 | 
																													
																						| 20 | 冀泽华, 冯冲凌, 吴晓芙, 等.  人工湿地污水处理系统基质及其净化机理研究进展[J]. 生态学杂志, 2016, 35 (8): 2234- 2243. URL
 | 
																													
																						| 21 | 丁怡, 唐海燕, 刘兴坡, 等.  不同类型人工湿地在污水脱氮中的研究进展[J]. 工业水处理, 2019, 39 (7): 1- 3. URL
 | 
																													
																						| 22 | Wu Haiming ,  Zhang Jian ,  Ngo H H , et al.  A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation[J]. Bioresource Technology, 2015, 175, 594- 601. URL
 | 
																													
																						| 23 | 张弘弢, 谌书, 王彬, 等.  组合式人工湿地对分散型生活污水净化效果及其微生物群落结构特征[J]. 环境化学, 2019, 38 (11): 2535- 2545. URL
 | 
																													
																						| 24 | 王小晓, 吴胜军, 王雨, 等.  基于人工湿地的海水池塘循环水养殖系统构建与运行效果研究[J]. 西南师范大学学报, 2016, 41 (9): 24- 29. URL
 | 
																													
																						| 25 | Nandakumar S ,  Pipil H ,  Ray S , et al.  Removal of phosphorous and nitrogen from wastewater in Brachiaria-based constructed wetland[J]. Chemosphere, 2019, 233, 216- 222. URL
 | 
																													
																						| 26 | Zhou Xu ,  Jia Lixia ,  Liang Chenglong , et al.  Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland: Effects of influent strength[J]. Chemical Engineering Journal, 2018, 334, 1842- 1850. | 
																													
																						| 27 | 熊家晴, 杜晨, 郑于聪, 等.  表流-水平流复合人工湿地对高污染河水的净化[J]. 环境工程学报, 2015, 9 (11): 5167- 5172. URL
 | 
																													
																						| 28 | 范英宏.  复合垂直流人工湿地处理生活污水的试验研究[J]. 北京交通大学学报, 2018, 42 (6): 41- 47. URL
 | 
																													
																						| 29 | 杨婷, 李翠梅, 张燕, 等.  新型多级复合人工湿地的应用与除磷效果[J]. 环境工程学报, 2016, 10 (11): 6235- 6240. URL
 | 
																													
																						| 30 | Shen Youhao ,  Zhuang Linlan ,  Zhang Jian , et al.  A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2019, 359 (1): 706- 712. | 
																													
																						| 31 | Yakar A ,  Türe C ,  Türker O C , et al.  Impacts of various filtration media on wastewater treatment and bioelectric production in upflow constructed wetland combined with microbial fuel cell(UCW-MFC)[J]. Ecological Engineering, 2018, 117, 120- 132. | 
																													
																						| 32 | 何媛, 王宇晖, 宋新山.  电极强化人工湿地处理污水脱氮的效果[J]. 环境工程学报, 2016, 10 (9): 4867- 4872. URL
 | 
																													
																						| 33 | 吕露遥, 杨永哲, 张雷, 等.  多级垂直潮汐流人工湿地厌氧NH4+氧化脱氮研究[J]. 水处理技术, 2019, 45 (10): 114- 120. URL
 | 
																													
																						| 34 | 吴薇, 陈树磊, 刘建华, 等.  太阳能曝气强化人工湿地对养猪废水的净化效果[J]. 安徽农业科学, 2019, 47 (12): 67- 69. URL
 | 
																													
																						| 35 | Fan Jinlin ,  Zhang Bo ,  Zhang Jian , et al.  Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands[J]. Bioresource Technology, 2013, 141, 117- 122. URL
 | 
																													
																						| 36 | Zhong Fei ,  Huang Shan ,  Wu Juan , et al.  The use of microalgal biomass as a carbon source for nitrate removal in horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2019, 127, 263- 267. URL
 | 
																													
																						| 37 | Li Meng ,  Sun Linlin ,  Song Xiefa .  Adding maize cobs to vertical subsurface flow constructed wetlands treating marine recirculating aquaculture system effluents: Carbon releasing kinetics and intensified nitrogen removal[J]. Bioresource Technology, 2019, 274, 267- 271. | 
																													
																						| 38 | Meng Fanchen ,  Feng Lijuan ,  Yin Haojie , et al.  Assessment of nutrient removal and microbial population dynamics in a non-aerated vertical baffled flow constructed wetland for contaminated water treatment with composite biochar addition[J]. Journal of Environmental Management, 2019, 246 (15): 355- 361. | 
																													
																						| 39 | 黄杉, 怀静, 吴娟, 等.  碳源补充促进人工湿地脱氮研究进展[J]. 水处理技术, 2018, 44 (1): 13- 16. URL
 | 
																													
																						| 40 | Li Dan ,  Zheng Binghui ,  Chu Zhaosheng , et al.  Seasonal variations of performance and operation in field-scale storing multipond constructed wetlands for nonpoint source pollution mitigation in a plateau lake basin[J]. Bioresource Technology, 2019, 280, 295- 302. | 
																													
																						| 41 | Hua Guofen ,  Zeng Yitao ,  Zhao Zhongwei , et al.  Applying a resting operation to alleviate bioclogging in vertical flow constructed wetlands: An experimental lab evaluation[J]. Journal of Environmental Management, 2014, 136, 47- 53. URL
 | 
																													
																						| 42 | 王团团, 杨扬, 邰义萍, 等.  回流立式组合人工湿地处理生活污水的效果[J]. 环境工程学报, 2016, 10 (9): 4768- 4774. URL
 | 
																													
																						| 43 | 张国珍, 马凯, 薛彦茵, 等.  不同水力负荷下复合垂直-水平流人工湿地的污染处理效果分析[J]. 安全与环境学报, 2019, 19 (6): 2166- 2175. URL
 | 
																													
																						| 44 | 刘灏, 王勇, 张宝莉, 等.  垂直流人工湿地中基质组合对污水的处理效果及模型模拟[J]. 环境工程学报, 2016, 10 (6): 2940- 2946. URL
 | 
																													
																						| 45 | 刘叶双, 贾艾晨.  NaCl示踪剂测定人工湿地水力停留时间的试验研究[J]. 东北水利水电, 2018, 36 (3): 53- 56. URL
 |