| 1 | Tyagi S ,  Rawtani D ,  Khatri N , et al.  Strategies for nitrate removal from aqueous environment using nanotechnology: a review[J]. Journal of Water Process Engineering, 2018, 21, 84- 95. doi: 10.1016/j.jwpe.2017.12.005
 | 
																													
																						| 2 | Vymazal J .  Constructed wetlands for treatment of industrial wastewaters: a review[J]. Ecological Engineering, 2014, 73, 724- 751. doi: 10.1016/j.ecoleng.2014.09.034
 | 
																													
																						| 3 | 翟思媛, 赵迎新, 季民.  自养-异养反硝化协同作用强化污水深度脱氮研究进展[J]. 水处理技术, 2018, 44 (6): 1- 5. URL
 | 
																													
																						| 4 | Sahinkaya E ,  Dursun N .  Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement[J]. Chemosphere, 2012, 89 (2): 144- 149. doi: 10.1016/j.chemosphere.2012.05.029
 | 
																													
																						| 5 | Capua F D ,  Pirozzi F ,  Lens P N L , et al.  Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362, 922- 937. doi: 10.1016/j.cej.2019.01.069
 | 
																													
																						| 6 | Liang Jing ,  Chen Nan ,  Tong Shuang , et al.  Sulfur autotrophic denitrification(SAD) driven by homogeneous composite particles containing CaCO3-type kitchen waste for groundwater remediation[J]. Chemosphere, 2018, 212, 954- 963. doi: 10.1016/j.chemosphere.2018.08.161
 | 
																													
																						| 7 | Pu Jiaoyang ,  Fen Chuanping ,  Liu Ying , et al.  Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater[J]. Bioresource Technology, 2014, 173, 117- 123. doi: 10.1016/j.biortech.2014.09.092
 | 
																													
																						| 8 | Wang Junfeng ,  Song Xinshan ,  Li Qusheng , et al.  Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI[J]. Water Research, 2019, 150, 340- 348. doi: 10.1016/j.watres.2018.11.075
 | 
																													
																						| 9 | 国家环境保护总局.  水和废水监测分析方法[M]. 4版 北京: 中国环境科学出版社, 2002: 164- 279. | 
																													
																						| 10 | 吴姣姣, 黎远梅, 谭东梅, 等.  HRT对UASB厌氧反硝化脱氮的影响[J]. 环境工程学报, 2018, 12 (5): 1510- 1516. URL
 | 
																													
																						| 11 | Jahangir M M R ,  Fenton O ,  Muller C , et al.  In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland[J]. Water Research, 2017, 111, 254- 264. doi: 10.1016/j.watres.2017.01.015
 | 
																													
																						| 12 | Ge Xiaoyan ,  Cao Xin ,  Song Xinshan , et al.  Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell[J]. Bioresource Technology, 2020, 296, 122350. doi: 10.1016/j.biortech.2019.122350
 | 
																													
																						| 13 | 王润泽. 皂河-渭河交汇区交互带三氮的迁移转化规律研究[D]. 西安: 长安大学, 2019. | 
																													
																						| 14 | Torrento C ,  Urmeneta J ,  Otero N , et al.  Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology, 2011, 287 (1/2): 90- 101. URL
 | 
																													
																						| 15 | Ge Shijian ,  Peng Yongzhen ,  Wang Shuying , et al.  Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3--N[J]. Bioresource Technology, 2012, 114, 137- 143. doi: 10.1016/j.biortech.2012.03.016
 | 
																													
																						| 16 | 黄斯婷, 杨庆, 刘秀红, 等.  不同碳源条件下污水处理反硝化过程亚硝态氮积累特性的研究进展[J]. 水处理技术, 2015, 41 (7): 21- 25. URL
 | 
																													
																						| 17 | Rinaldo S ,  Arcovito A ,  Giardina G , et al.  New insights into the activity of Pseudomonas aeruginosa cd1 nitrite reductase[J]. Biochemical Society Transactions, 2008, 36, 1155- 1159. doi: 10.1042/BST0361155
 | 
																													
																						| 18 | Tong Shuang ,  Stocks J L ,  Rodriguez-Gonzalez L C , et al.  Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification(PPAD) process[J]. Bioresource Technology, 2017, 244 (1): 296- 303. URL
 | 
																													
																						| 19 | Jin Shunlong ,  Feng Chuanping ,  Tong Shuang , et al.  Effect of sawdust dosage and hydraulic retention time(HRT) on nitrate removal in sawdust/pyrite mixotrophic denitrification(SPMD) systems[J]. Environmental Science Water Research & Technology, 2019, 5 (2): 346- 357. URL
 | 
																													
																						| 20 | 卜翠娜. 异化硝酸盐还原菌(DNRA)的环境分布及富集培养研究[D]. 济南: 山东大学, 2018. | 
																													
																						| 21 | Ge Zhibin ,  Wei Dongyang ,  Zhang Jing , et al.  Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study[J]. Water Research, 2019, 148, 153- 161. doi: 10.1016/j.watres.2018.10.037
 | 
																													
																						| 22 | Chen Yi ,  Wen Yue ,  Zhou Qi , et al.  Sulfate removal and sulfur transformation in constructed wetlands: the roles of filling material and plant biomass[J]. Water Research, 2016, 102, 572- 581. doi: 10.1016/j.watres.2016.07.001
 |