1 |
WU Haiming , ZHANG Jian , NGO H H , et al. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation[J]. Bioresource Technology, 2015, 175, 594- 601.
doi: 10.1016/j.biortech.2014.10.068
|
2 |
JIANG Yinghe , LI Yao , ZHANG Ying , et al. Effects of HRT on the efficiency of denitrification and carbon source release in constructed wetland filled with bark[J]. Water Science and Technology: Journal of the International Association on Water Pollution Research, 2017, 75 (12): 2908- 2915.
doi: 10.2166/wst.2017.176
|
3 |
姜应和, 李瑶, 张莹, 等. NO3--N负荷对树皮填料人工湿地早期反硝化及释碳速率的影响[J]. 环境科学, 2017, 38 (5): 1898- 1903.
URL
|
4 |
LU Songliu , HU Hongying , SUN Yingxue , et al. Effect of carbon source on the denitrification in constructed wetlands[J]. Journal of Environmental Sciences, 2009, 21 (8): 1036- 1043.
doi: 10.1016/S1001-0742(08)62379-7
|
5 |
SHEN Zhiqiang , ZHOU Yuexi , WANG Jianlong . Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal[J]. Bioresource Technology, 2013, 131, 33- 39.
doi: 10.1016/j.biortech.2012.12.169
|
6 |
范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30 (8): 2315- 2319.
doi: 10.3321/j.issn:0250-3301.2009.08.023
|
7 |
唐丹琦, 王娟, 郑天龙, 等. 聚乳酸/淀粉固体缓释碳源生物反硝化研究[J]. 环境科学, 2014, 35 (6): 2236- 2240.
URL
|
8 |
封羽涛, 吴为中. 可降解聚合物PCL、PBS在低有机污染水中固相反硝化脱氮效果比较[J]. 生态环境学报, 2011, 20 (增刊): 1127- 1132.
URL
|
9 |
KOCH G , SIEGRIST H . Denitrification with methanol in tertiary filtration at wastewater treatment plant Zürich-Werdholzli[J]. Water Science and Technology, 1997, 36 (1): 165- 172.
doi: 10.2166/wst.1997.0038
|
10 |
程鹏, 慎义勇, 盛国英, 等. 添加乙醇碳源对驯化菌种降解油制气废水的影响[J]. 环境污染与防治, 2005, 27 (8): 597- 600.
doi: 10.3969/j.issn.1001-3865.2005.08.012
|
11 |
JIA Lixia , GOU Enfang , LIU Hai , et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: Characterization of the driving force for high-rate nitrogen removal[J]. Environmental Science & Technology, 2019, 53 (3): 1258- 1268.
URL
|
12 |
JIA Lixia , LI Cong , ZHANG Yan , et al. Microbial community responses to agricultural biomass addition in aerated constructed wetlands treating low carbon wastewater[J]. Journal of Environmental Management, 2020, 270, 110912.
doi: 10.1016/j.jenvman.2020.110912
|
13 |
魏星, 朱伟, 赵联芳, 等. 植物秸秆作补充碳源对人工湿地脱氮效果的影响[J]. 湖泊科学, 2010, 22 (6): 916- 922.
URL
|
14 |
邵留, 徐祖信, 金伟, 等. 农业废物反硝化固体碳源的优选[J]. 中国环境科学, 2011, 31 (5): 748- 754.
URL
|
15 |
郭颖. 沉水植物底栖动物协同增强人工湿地运行效果研究[D]. 济南: 山东大学, 2019.
|
16 |
周旭. 生物炭联合曝气强化人工湿地处理低碳氮比污水的效能及其过程研究[D]. 杨凌: 西北农林科技大学, 2018.
|
17 |
程呈. 人工湿地系统中甲烷和氧化亚氮的同步消减及机制研究[D]. 济南: 山东大学, 2019. (下转第114页) (上接第94页)
|
18 |
WANG Yuesi , WANG Yinghong . Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem[J]. Advances in Atmospheric Sciences, 2003, 20 (5): 842- 844.
doi: 10.1007/BF02915410
|
19 |
钟胜强, 杨扬, 陶然, 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8 (5): 1817- 1824.
URL
|
20 |
SINGH A , TUTEJA S , SINGH N , et al. Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production[J]. Bioresource Technology, 2011, 102 (2): 1773- 1782.
doi: 10.1016/j.biortech.2010.08.113
|
21 |
姚川颖. 外加碳源强化人工湿地脱氮研究[D]. 沈阳: 东北大学, 2014.
|
22 |
丁怡, 王玮, 王宇晖, 等. 不同进水碳氮比对水平潜流人工湿地脱氮效果的影响[J]. 工业水处理, 2014, 34 (10): 29- 32.
doi: 10.11894/1005-829x.2014.34(10).029
|
23 |
熊家晴, 孙建民, 郑于聪, 等. 植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理, 2018, 38 (9): 41- 44.
URL
|
24 |
HUANG Lei , GAO Xu , GUO Jinsong , et al. A review on the mechanism and affecting factors of nitrous oxide emission in constructed wetlands[J]. Environmental Earth Sciences, 2013, 68 (8): 21712180.
URL
|
25 |
CHON K , CHANG J S , LEE E , et al. Abundance of denitrifying genes coding for nitrate(narG), nitrite(nirS), and nitrous oxide(nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands[J]. Ecological Engineering, 2011, 37 (1): 64- 69.
doi: 10.1016/j.ecoleng.2009.04.005
|
26 |
HAN Wenjuan , CHANG Jie , FAN Xing , et al. Plant species diversity impacts nitrogen removal and nitrous oxide emissions as much as carbon addition in constructed wetland microcosms[J]. Ecological Engineering, 2016, 93, 144- 151.
doi: 10.1016/j.ecoleng.2016.05.030
|