1 |
LECLERCQ M , MATHIEU O , GOMEZ E , et al. Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants[J]. Archives of Environmental Contamination and Toxicology, 2008, 56 (3): 408- 415.
URL
|
2 |
王超, 姚淑美, 彭叶平, 等. 高级氧化法处理抗生素废水研究进展[J]. 化工环保, 2018, 38 (2): 135- 140.
URL
|
3 |
LUO Jinming , LIU Tongcai , ZHANG Danyu , et al. The individual and co-exposure degradation of benzophenone derivatives by UV/H2O2 and UV/PDS in different water matrices[J]. Water Research, 2019, 159, 102- 110.
doi: 10.1016/j.watres.2019.05.019
|
4 |
ANIPSITAKIS G P , DIONYSIOU D D . Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38 (13): 3705- 3712.
URL
|
5 |
LIANG Chenju , LIANG C P , CHEN C C . pH dependence of persulfate activation by EDTA/Fe (Ⅲ) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106 (3/4): 173- 182.
URL
|
6 |
QIN Yaxin , SONG Fahui , AI Zhihui , et al. Protocatechuic acid promoted alachlor degradation in Fe (Ⅲ)/H2O2 Fenton system[J]. Environmental Science & Technology, 2015, 49 (13): 7948- 7956.
URL
|
7 |
NIE Yulun , HU Chun , QU Jiuhui , et al. Photoassisted degradation of azodyes over FeOxH2x-3/Fe0 in the presence of H2O2 at neutral pH values[J]. Environmental Science & Technology, 2007, 41 (13): 4715- 4719.
URL
|
8 |
ZOU Jing , MA Jun , CHEN Liwei , et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe (Ⅲ)/Fe (Ⅱ) cycle with hydroxylamine[J]. Environmental Science & Technology, 2013, 47 (20): 11685- 11691.
URL
|
9 |
XING Mingyang , XU Wenjing , DONG Chencheng , et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4 (6): 1359- 1372.
doi: 10.1016/j.chempr.2018.03.002
|
10 |
DONG Chencheng , JI Jiahui , SHEN Bin , et al. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr (Ⅵ) and remediation of phenol[J]. Environmental Science & Technology, 2018, 52 (19): 11297- 11308.
URL
|
11 |
WANG Yu , WU Yang , YU Yafei , et al. Natural polyphenols enhanced the Cu (Ⅱ)/peroxymonosulfate (PMS) oxidation: The contribution of Cu (Ⅲ) and HO·[J]. Water Research, 2020, 186, 116326.
doi: 10.1016/j.watres.2020.116326
|
12 |
LIU Tongcai , ZHANG Danyu , YIN Kai , et al. Degradation of thiacloprid via unactivated peroxymonosulfate: The overlooked singlet oxygen oxidation[J]. Chemical Engineering Journal, 2020, 388, 124264.
doi: 10.1016/j.cej.2020.124264
|
13 |
ZHOU Yang , JIANG Jin , GAO Yuan , et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49 (21): 12941- 12950.
URL
|
14 |
桑稳姣, 李志轩, 黄明杰. 羟胺强化过渡金属活化过硫酸盐降解磺胺甲恶唑[J]. 环境科学学报, 2019, 39 (6): 1772- 1780.
URL
|
15 |
FENG Yong , WU Deli , ZHOU Ying , et al. A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: Mechanisms, kinetics, and implications[J]. Chemical Engineering Journal, 2017, 330, 906- 913.
doi: 10.1016/j.cej.2017.08.034
|
16 |
ZHANG Tao , ZHU Haibo , CROUE J P . Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47 (6): 2784- 2791.
URL
|
17 |
OESS A , CHESHIRE M V , MCPHAIL D B , et al. Elucidation of phenol-Cu interaction mechanisms by potentiometry, ESR, UV absorption spectroscopy and molecular simulations[J]. Science of the Total Environment, 1999, 228 (1): 49- 58.
doi: 10.1016/S0048-9697(99)00029-7
|
18 |
LEE H , LEE H J , SEO J , et al. Activation of oxygen and hydrogen peroxide by copper (Ⅱ) coupled with hydroxylamine for oxidation of organic contaminants[J]. Environmental Science & Technology, 2016, 50 (15): 8231- 8238.
URL
|
19 |
MARTINEZ C , CANLE L M , FERNANDEZ M I , et al. Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites[J]. Applied Catalysis B: Environmental, 2011, 102 (3/4): 563- 571.
URL
|
20 |
SUN Shengpeng , ZENG Xia , LEMLEY A T . Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes[J]. Journal of Hazardous Materials, 2013, 252/253, 155- 165.
doi: 10.1016/j.jhazmat.2013.02.045
|
21 |
GOLAN-ROZEN N , SEIWERT B , RIEMENSCHNEIDER C , et al. Transformation pathways of the recalcitrant pharmaceutical compound carbamazepine by the white-rot fungus pleurotus ostreatus: Effects of growth conditions[J]. Environmental Science & Technology, 2015, 49 (20): 12351- 12362.
URL
|
22 |
YIN Kai , DENG Lin , LUO Jinming , et al. Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential[J]. Chemical Engineering Journal, 2018, 351, 867- 877.
doi: 10.1016/j.cej.2018.06.164
|
23 |
殷凯. Mn (Ⅶ)及基于UV的氧化降解水中新兴微污染物的研究[D]. 长沙: 湖南大学, 2018.
|
24 |
PAN Yanheng , CHENG Shuangshuang , YANG Xin , et al. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics[J]. Water Research, 2017, 116, 254- 265.
doi: 10.1016/j.watres.2017.03.033
|