1 |
WANG Y L, PEÑAS-GARZÓN M, RODRIGUEZ J J,et al. Enhanced photodegradation of acetaminophen over Sr@TiO 2/UiO-66-NH 2 heterostructures under solar light irradiation[J]. Chemical Engineering Journal, 2022, 446:137229. doi: 10.1016/j.cej.2022.137229
|
2 |
YAN Lu, NI Changbiao, DUAN Yumei,et al. Surface plasmon resonance and oxygen vacancy on Bi/BiO 1- y Cl x Br 1- x synergistically boost high-efficiently photodegradation acetaminophen in waste water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 648:129310. doi: 10.1016/j.colsurfa.2022.129310
|
3 |
ZYOUD A H, ZUBI A, HEJJAWI S,et al. Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO 2 nanoparticles:Catalytic efficiency assessment for future prospects[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):104038. doi: 10.1016/j.jece.2020.104038
|
4 |
MA Shuren, HAN Yong, ZHANG Ying,et al. Electrically enhanced activity of cationic surfactant for the bubble surface modification of solvent sublation to remove acetaminophen from water[J]. Journal of Molecular Liquids, 2022, 362:119700. doi: 10.1016/j.molliq.2022.119700
|
5 |
MOLODTSOVA T, GORSHENKOV M, KUBRIN S,et al. One-step access to bifunctional γ-Fe 2O 3/ δ-FeOOH electrocatalyst for oxygen reduction reaction and acetaminophen sensing[J]. Journal of the Institute of Chemical Engineers, 2022, 140:104569. doi: 10.1016/j.jtice.2022.104569
|
6 |
NATARAJAN R, VENKATARAMAN S, RAJENDRAN D S,et al. Adsorption performance of magnetic mesoporous silica microsphere support toward the remediation of acetaminophen from aqueous solution[J]. Journal of Water Process Engineering, 2022, 48:102835. doi: 10.1016/j.jwpe.2022.102835
|
7 |
黄艳,邢波,杨郭,等. 钢渣/活性炭复合材料催化过硫酸盐降解盐酸四环素[J]. 工业水处理,2022,42(3):131-138.
|
|
HUANG Yan, XING Bo, YANG Guo,et al. Catalytic degradation of tetracycline hydrochloride with persulfate catalyzed by composite of carbon and steel slag[J]. Industrial Water Treatment,2022,42(3):131-138.
|
8 |
ALFRED M O, MOODLEY R, OLADOJA N A,et al. Sunlight-active Cu/Fe@ZnWO 4-kaolinite composites for degradation of acetaminophen,ampicillin and sulfamethoxazole in water[J]. Ceramics International, 2021, 47(13):19220-19233. doi: 10.1016/j.ceramint.2021.03.219
|
9 |
CHAU J H F, LAI C W, LEO B F,et al. Advanced photocatalytic degradation of acetaminophen using Cu 2O/WO 3/TiO 2 ternary composite under solar irradiation[J]. Catalysis Communications, 2022, 163:106396. doi: 10.1016/j.catcom.2022.106396
|
10 |
GARCÍA-DOMÍNGUEZ Á E, TORRES-TORRES G, ARÉVALO-PÉREZ J C,et al. Urea assisted synthesis of TiO 2-CeO 2 composites for photocatalytic acetaminophen degradation via simplex-centroid mixture design[J]. Results in Engineering, 2022, 14:100443. doi: 10.1016/j.rineng.2022.100443
|
11 |
LEE Jiale, TAN Xinyu, NG B J,et al. Cyano group modified graphitic carbon nitride with K intercalation for sustainable photodegradation of pharmaceutical waste[J]. Journal of the Institute of Chemical Engineers, 2023, 142:104617. doi: 10.1016/j.jtice.2022.104617
|
12 |
PEÑAS-GARZÓN M, GÓMEZ-AVILÉS A, ÁLVAREZ-CONDE J,et al. Azaindole grafted titanium dioxide for the photodegradation of pharmaceuticals under solar irradiation[J]. Journal of Colloid and Interface Science, 2023, 629(Pt A):593-603. doi: 10.1016/j.jcis.2022.09.005
|
13 |
QIN Yuxuan, HANG Chen, HUANG Liping,et al. An electrochemical biosensor of Sn@C derived from ZnSn(OH) 6 for sensitive determination of acetaminophen[J]. Microchemical Journal, 2022, 175:107128. doi: 10.1016/j.microc.2021.107128
|
14 |
KIM C, SCHMIDT T C, LUTZE H V. Oxidation of bromide by heat-activated persulfate:Effects of temperature and the organic matter surrogate phenol on kinetics and stoichiometry[J]. Chemical Engineering Journal, 2022, 433:133533. doi: 10.1016/j.cej.2021.133533
|
15 |
PALANIVEL B, HOSSAIN M S, REDDY I N,et al. Chemical oxidants (H 2O 2 and persulfate) activated photo-Fenton like degradation reaction using sol-gel derived g-C 3N 4/ZnCo 2O 4 nanocomposite[J]. Diamond and Related Materials, 2022, 130:109413. doi: 10.1016/j.diamond.2022.109413
|
16 |
SUGIHARTONO V E, MAHASTI N N N, SHIH Y J,et al. Photo-persulfate oxidation and mineralization of benzoic acid:Kinetics and optimization under UVC irradiation[J]. Chemosphere, 2022, 296:133663. doi: 10.1016/j.chemosphere.2022.133663
|
17 |
YU Zhihao, LIU Baoliang, PENG Qian,et al. Enhanced photo-synergetic persulfate catalytic properties of Fe-doped TiO 2 with engineered facets[J]. Materials Letters, 2022, 325:132848. doi: 10.1016/j.matlet.2022.132848
|
18 |
张丹,陈博凯,晁聪,等. 紫外光活化过硫酸盐脱色处理甲基橙染料的研究[J]. 工业水处理,2022,42(5):117-124.
|
|
ZHANG Dan, CHEN Bokai, CHAO Cong,et al. Decolorization treatment methyl orange dye by ultraviolet activated persulfate process[J]. Industrial Water Treatment,2022,42(5):117-124.
|
19 |
CAI Haitao, CHEN Ming, LI Jun,et al. Insight into the activation of persulfate with Cu 2O/visible-light:Cu(Ⅰ) based photo-Fenton and Cu 2O surface mediated free radical mechanism[J]. Materials Science in Semiconductor Processing, 2022, 143:106502. doi: 10.1016/j.mssp.2022.106502
|
20 |
HUANG Junyi, ZHOU Yuanhao, DENG Shimao,et al. Photo-assisted reductive cleavage and catalytic hydrolysis-mediated persulfate activation by mixed redox-couple-involved CuFeS 2 for efficient trichloroethylene oxidation in groundwater[J]. Water Research, 2022, 222:118885. doi: 10.1016/j.watres.2022.118885
|
21 |
YAN Cai, LIU Lifen. Oxidation of gas phase ammonia via accelerated generation of radical species and synergy of photo electrochemical catalysis with persulfate activation by CuO-Co 3O 4 on cathode electrode[J]. Journal of Hazardous Materials, 2020, 388:121793. doi: 10.1016/j.jhazmat.2019.121793
|
22 |
FENG Qinqin, ZHOU Jiabin, LUO Wenjia,et al. Photo-Fenton removal of tetracycline hydrochloride using LaFeO 3 as a persulfate activator under visible light[J]. Ecotoxicology and Environmental Safety, 2020, 198:110661. doi: 10.1016/j.ecoenv.2020.110661
|
23 |
WANG Zixuan, WANG Han, WANG Ziwei,et al. Ferrocene modified g-C 3N 4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 626:127024. doi: 10.1016/j.colsurfa.2021.127024
|
24 |
ZHU Yangchen, WANG Fei, ZHOU Beihai,et al. Photo-assisted Fe 2+ modified molybdenum disulfide activated potassium persulfate to degrade sulfadiazine:Insights into the degradation pathway and mechanism from density functional theory[J]. Chemical Engineering Journal, 2022, 435:134904. doi: 10.1016/j.cej.2022.134904
|
25 |
CHENG Boyi, JIANG Wei, ZHANG Da,et al. Thiosulfate-assisted Fe 2+/persulfate pretreatment effectively alleviating iron dose and enhancing biotransformation of waste activated sludge into high-value liquid products[J]. Chemosphere, 2022, 303:135106. doi: 10.1016/j.chemosphere.2022.135106
|
26 |
GAO Yue, XUE Yanan, JI Jing,et al. Remediation of industrial site soil contaminated with PAHs using stage persulfate oxidation activated by Fe 2+ chelated with sodium citrate[J]. Chemosphere, 2023, 313:137450. doi: 10.1016/j.chemosphere.2022.137450
|
27 |
GE Dongdong, ZHU Yidan, LI Guobiao,et al. Identifying the key sludge properties characteristics in Fe 2+-activated persulfate conditioning for dewaterability amelioration and engineering implementation[J]. Journal of Environmental Management, 2021, 296:113204. doi: 10.1016/j.jenvman.2021.113204
|
28 |
ZHANG Xin, ZHANG Hongtao, WANG Zhenchang,et al. Enhanced paper sludge dewatering and in-depth mechanism by oxalic acid/Fe 2+/persulfate process[J]. Chemosphere, 2023, 311:136966. doi: 10.1016/j.chemosphere.2022.136966
|
29 |
YANG Peng, LI Dandan, ZHANG Weijun,et al. Study of sludge conditioning using organic acids chelated ferrous ion catalyzed NaClO oxidation:Evolution of extracellular polymeric substances and floc structure[J]. Journal of Environmental Management, 2021, 280:111757. doi: 10.1016/j.jenvman.2020.111757
|
30 |
HUANG Min, ZHU Changyin, ZHU Fengxiao,et al. Mechanism of significant enhancement of VO 2-Fenton-like reactions by oxalic acid for diethyl phthalate degradation[J]. Separation and Purification Technology, 2021, 279:119671. doi: 10.1016/j.seppur.2021.119671
|
31 |
SUN Yong, LI Ming, GU Xiaogang,et al. Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(Ⅱ)[J]. Journal of Hazardous Materials, 2021, 407:124814. doi: 10.1016/j.jhazmat.2020.124814
|
32 |
YU Sixia, GU Xiaogang, LU Shuguang,et al. Degradation of phenanthrene in aqueous solution by a persulf ate/percarbonate system activated with CA chelated-Fe(Ⅱ)[J]. Chemical Engineering Journal, 2018, 333:122-131. doi: 10.1016/j.cej.2017.09.158
|
33 |
GAO Yue, YANG Fang, JIAN Hongxian,et al. Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106733. doi: 10.1016/j.jece.2021.106733
|
34 |
TEEL A L, WATTS R J. Degradation of carbon tetrachloride by modified Fenton’s reagent[J]. Journal of Hazardous Materials, 2002, 94(2):179-189. doi: 10.1016/s0304-3894(02)00068-7
|
35 |
JIANG Mengdi, LU Junhe, JI Yuefei,et al. Bicarbonate-activated persulfate oxidation of acetaminophen[J]. Water Research, 2017, 116:324-331. doi: 10.1016/j.watres.2017.03.043
|
36 |
WANG Songlin, WU Junfeng, LU Xiuqing,et al. Removal of acetaminophen in the Fe 2+/persulfate system:Kinetic model and degradation pathways[J]. Chemical Engineering Journal, 2019, 358:1091-1100. doi: 10.1016/j.cej.2018.09.145
|
37 |
NIE Minghua, YAN Caixia, XIONG Xiaoying,et al. Degradation of chloramphenicol using a combination system of simulated solar light,Fe 2+ and persulfate[J]. Chemical Engineering Journal, 2018, 348:455-463. doi: 10.1016/j.cej.2018.04.124
|