1 |
TOR J M, LOVLEY D R. Anaerobic degradation of aromatic compounds coupled to Fe(Ⅲ) reduction by Ferroglobus placidus [J]. Environmental Microbiology, 2001, 3(4):281-287. doi: 10.1046/j.1462-2920.2001.00192.x
|
2 |
CACCAVO F Jr, BLAKEMORE R P, LOVLEY D R. A hydrogen-oxidizing,Fe(Ⅲ)-reducing microorganism from the great bay estuary,new Hampshire[J]. Applied and Environmental Microbiology, 1992, 58(10):3211-3216. doi: 10.1128/aem.58.10.3211-3216.1992
|
3 |
MYERS C R, NEALSON K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science, 1988, 240(4857):1319-1321. doi: 10.1126/science.240.4857.1319
|
4 |
LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Advances in Microbial Physiology, 2004, 49:219-286. doi: 10.1016/s0065-2911(04)49005-5
|
5 |
张涵,孙珊珊,董浩,等. 铁还原菌降解石油烃的研究进展[J]. 微生物学报,2020,60(6):1246-1258.
|
|
ZHANG Han, SUN Shanshan, DONG Hao,et al. Degradation of petroleum hydrocarbons by using iron-reducing bacteria[J]. Acta Microbiologica Sinica,2020,60(6):1246-1258.
|
6 |
胡敏,李芳柏. 土壤微生物铁循环及其环境意义[J]. 土壤学报,2014,51(4):683-698.
|
|
HU Min, LI Fangbai. Soil microbe mediated iron cycling and its environmental implication[J]. Acta Pedologica Sinica,2014,51(4):683-698.
|
7 |
BEBLAWY S, BURSAC T, PAQUETE C,et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis [J]. Molecular Microbiology, 2018, 109(5):571-583. doi: 10.1111/mmi.14067
|
8 |
MELTON E D, SWANNER E D, BEHRENS S,et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 2014, 12(12):797-808. doi: 10.1038/nrmicro3347
|
9 |
FREDRICKSON J K, ROMINE M F, BELIAEV A S,et al. Towards environmental systems biology of Shewanella [J]. Nature Reviews Microbiology, 2008, 6(8):592-603. doi: 10.1038/nrmicro1947
|
10 |
JIANG Yongguang, SHI Meimei, SHI Liang. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements[J]. Science China. Life Sciences, 2019, 62(10):1275-1286. doi: 10.1007/s11427-018-9464-3
|
11 |
WANG Shu, WU Yu, AN Jingkun,et al. Geobacter autogenically secretes fulvic acid to facilitate the dissimilated iron reduction and vivianite recovery[J]. Environmental Science & Technology, 2020, 54(17):10850-10858. doi: 10.1021/acs.est.0c01404
|
12 |
STAMS A J M, DE BOK F A M, PLUGGE C M,et al. Exocellular electron transfer in anaerobic microbial communities[J]. Environmental Microbiology, 2006, 8(3):371-382. doi: 10.1111/j.1462-2920.2006.00989.x
|
13 |
REGUERA G, MCCARTHY K D, MEHTA T,et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101. doi: 10.1038/nature03661
|
14 |
LOVLEY D R, WALKER D J F. Geobacter protein nanowires[J]. Frontiers in Microbiology, 2019, 10:2078. doi: 10.3389/fmicb.2019.02078
|
15 |
刘星,周顺桂. 微生物纳米导线的导电机制及功能[J]. 微生物学报,2020,60(9):2039-2061.
|
|
LIU Xing, ZHOU Shungui. Electrical conductivity and application of microbial nanowires[J]. Acta Microbiologica Sinica,2020,60(9):2039-2061.
|
16 |
SUBRAMANIAN P, PIRBADIAN S, EL-NAGGAR M Y,et al. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(14):E3246-E3255. doi: 10.1073/pnas.1718810115
|
17 |
WANG Fengbin, GU Yangqi, O’BRIEN J P,et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers[J]. Cell, 2019, 177(2):361-369. doi: 10.1016/j.cell.2019.03.029
|
18 |
FRIERDICH A J, HELGESON M, LIU Chengshuai,et al. Iron atom exchange between hematite and aqueous Fe(Ⅱ)[J]. Environmental Science & Technology, 2015, 49(14):8479-8486. doi: 10.1021/acs.est.5b01276
|
19 |
HANDLER R M, FRIERDICH A J, JOHNSON C M,et al. Fe(Ⅱ)-catalyzed recrystallization of goethite revisited[J]. Environmental Science & Technology, 2014, 48(19):11302-11311. doi: 10.1021/es503084u
|
20 |
|
|
LIU Geng, GONG Yufeng, SU Yiming,et al. Research progress of iron atom exchange between water-soluble Fe(Ⅱ) and typical iron(hydrogen) oxides[J]. Low Carbon World, 2019, 9(5):1-3. doi: 10.3969/j.issn.2095-2066.2019.05.001
|
21 |
|
22 |
ZACHARA J M, KUKKADAPU R K, FREDRICKSON J K,et al. Biomineralization of poorly crystalline Fe(Ⅲ) oxides by dissimilatory metal reducing bacteria(DMRB)[J]. Geomicrobiology Journal, 2002, 19(2):179-207. doi: 10.1080/01490450252864271
|
23 |
HANSEL C M, BENNER S G, FENDORF S. Competing Fe(Ⅱ)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology, 2005, 39(18):7147-7153. doi: 10.1021/es050666z
|
24 |
BAE S, LEE W. Biotransformation of lepidocrocite in the presence of quinones and flavins[J]. Geochimica et Cosmochimica Acta, 2013, 114:144-155. doi: 10.1016/j.gca.2013.03.041
|
25 |
DHAKAL P, MATOCHA C J, HUGGINS F E,et al. Nitrite reactivity with magnetite[J]. Environmental Science & Technology, 2013, 47(12):6206-6213. doi: 10.1021/es304011w
|
26 |
GRABB K C, BUCHWALD C, HANSEL C M,et al. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(Ⅱ) and its production of nitrous oxide[J]. Geochimica et Cosmochimica Acta, 2017, 196:388-402. doi: 10.1016/j.gca.2016.10.026
|
27 |
LU Yongsheng, HUANG Xueer, XU Lu,et al. Elucidation of the nitrogen-transformation mechanism for nitrite removal using a microbial-mediated iron redox cycling system[J]. Journal of Water Process Engineering, 2020, 33:101016. doi: 10.1016/j.jwpe.2019.101016
|
28 |
RAKSHIT S, MATOCHA C J, COYNE M S,et al. Nitrite reduction by Fe(Ⅱ) associated with kaolinite[J]. International Journal of Environmental Science and Technology, 2016, 13(5):1329-1334. doi: 10.1007/s13762-016-0971-x
|
29 |
RAKSHIT S, MATOCHA C J, COYNE M S. Nitrite reduction by siderite[J]. Soil Science Society of America Journal, 2008, 72(4):1070-1077. doi: 10.2136/sssaj2007.0296
|
30 |
LU Yongsheng, HE Yangyi, ZHOU Jizhi,et al. Control strategy for nitrate reduction by sulfate green rust:The key role of copper and aluminum[J]. Desalination and Water Treatment, 2019, 149:98-104. doi: 10.5004/dwt.2019.23795
|
31 |
LIU Tongxu, CHEN Dandan, LUO Xiaobo,et al. Microbially mediated nitrate-reducing Fe(Ⅱ) oxidation:Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019, 256:97-115. doi: 10.1016/j.gca.2018.06.040
|
32 |
LIU Tongxu, CHEN Dandan, LI Xiaomin,et al. Microbially mediated coupling of nitrate reduction and Fe(Ⅱ) oxidation under anoxic conditions[J]. FEMS Microbiology Ecology, 2019, 95(4):fiz030. doi: 10.1093/femsec/fiz030
|
33 |
|
|
YANG Han, ZHENG Dan, DENG Liangwei,et al. Iron recycle and biological nitrogen removal driven by microorganisms[J]. China Biogas, 2019, 37(4):77-86. doi: 10.3969/j.issn.1000-1166.2019.04.013
|
34 |
朱晓艳,袁宇翔,宋长春,等. 湿地土壤和沉积物异化铁还原过程研究进展[J]. 湿地科学,2020,18(1):122-128.
|
|
ZHU Xiaoyan, YUAN Yuxiang, SONG Changchun,et al. Advance in dissimilatory iron reduction in wetland soils and sediments[J]. Wetland Science,2020,18(1):122-128.
|
35 |
ROTHE M, KLEEBERG A, HUPFER M. The occurrence,identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J]. Earth-Science Reviews, 2016, 158:51-64. doi: 10.1016/j.earscirev.2016.04.008
|
36 |
ROTHE M, FREDERICHS T, EDER M,et al. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment:A novel analytical approach[J]. Biogeosciences, 2014, 11(18):5169-5180. doi: 10.5194/bg-11-5169-2014
|
37 |
EGGER M, JILBERT T, BEHRENDS T,et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 169:217-235. doi: 10.1016/j.gca.2015.09.012
|
38 |
SUN Dongya, BIAN Yanhong, LIU Panpan,et al. Electricity enhances biological Fe(Ⅲ) reduction and phosphorus recovery from FeP complex:Proof of concept and kinetic analysis[J]. ACS ES & T Engineering, 2021, 1(3):523-532. doi: 10.1021/acsestengg.0c00211
|
39 |
郝晓地,周健,王崇臣. 蓝铁矿形成于污泥厌氧消化系统的验证与分析[J]. 中国给水排水,2018,34(13):7-13.
|
|
HAO Xiaodi, ZHOU Jian, WANG Chongchen. Vivianite formed in anaerobic digestion of excess sludge:Verification and analysis[J]. China Water & Wastewater,2018,34(13):7-13.
|
40 |
王聪,王舒,李楠. 石墨强化微生物异化铁还原合成蓝铁石的磷回收研究[J]. 环境科学学报,2019,39(10):3325-3332.
|
|
WANG Cong, WANG Shu, LI Nan. Phosphorus recovery through vivianite production by graphite enhanced microbial dissimilatory iron reduction[J]. Acta Scientiae Circumstantiae,2019,39(10):3325-3332.
|
41 |
YU Yangyang, CHENG Qianwen, SHA Chong,et al. Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(Ⅵ)[J]. Chemical Engineering Journal, 2020, 379:122404. doi: 10.1016/j.cej.2019.122404
|
42 |
|
43 |
|
|
QIAN Ziyan, WU Chuan, HE Xuan,et al. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 2021, 40(3):834-850. doi: 10.7524/j.issn.0254-6108.2020050901
|
44 |
罗海林,汤佳,周普雄,等. 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志,2018,37(6):1620-1627.
|
|
LUO Hailin, TANG Jia, ZHOU Puxiong,et al. Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology,2018,37(6):1620-1627.
|
45 |
SUN Wenjie, CHENG Kai, SUN K Y,et al. Microbially mediated remediation of contaminated sediments by heavy metals:A critical review[J]. Current Pollution Reports, 2021, 7(2):201-212. doi: 10.1007/s40726-021-00175-7
|
46 |
MOHAMED A, YU Lu, FANG Yu,et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247:125902. doi: 10.1016/j.chemosphere.2020.125902
|
47 |
BEHRENDS T, VAN CAPPELLEN P. Competition between enzymatic and abiotic reduction of uranium(Ⅵ) under iron reducing conditions[J]. Chemical Geology, 2005, 220(3/4):315-327. doi: 10.1016/j.chemgeo.2005.04.007
|
48 |
O’LOUGHLIN E J, KELLY S D, KEMNER K M. XAFS investigation of the interactions of U(Ⅵ) with secondary mineralization products from the bioreduction of Fe(Ⅲ) oxides[J]. Environmental Science & Technology, 2010, 44(5):1656-1661. doi: 10.1021/es9027953
|
49 |
VEERAMANI H, ALESSI D S, SUVOROVA E I,et al. Products of abiotic U(Ⅵ) reduction by biogenic magnetite and vivianite[J]. Geochimica et Cosmochimica Acta, 2011, 75(9):2512-2528. doi: 10.1016/j.gca.2011.02.024
|
50 |
LI Chenchen, YI Xiaoyun, DANG Zhi,et al. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by shewanella oneidensis MR-1[J]. Chemosphere, 2016, 144:2065-2072. doi: 10.1016/j.chemosphere.2015.10.095
|
51 |
MUEHE E M, OBST M, HITCHCOCK A,et al. Fate of Cd during microbial Fe(Ⅲ) mineral reduction by a novel and Cd-tolerant Geobacter species [J]. Environmental Science & Technology, 2013, 47(24):14099-14109. doi: 10.1021/es403365w
|
52 |
SMEATON C M, FRYER B J, WEISENER C G. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite[J]. Environmental Science & Technology, 2009, 43(21):8086-8091. doi: 10.1021/es901629c
|
53 |
PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology, 2002, 36(8):1734-1741. doi: 10.1021/es011191o
|
54 |
ELSNER M, SCHWARZENBACH R P, HADERLEIN S B. Reactivity of Fe(Ⅱ)-bearing minerals toward reductive transformation of organic contaminants[J]. Environmental Science & Technology, 2004, 38(3):799-807. doi: 10.1021/es0345569
|
55 |
AMIR A, LEE W. Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin(Ⅲ) by nano-mackinawite[J]. Journal of Hazardous Materials, 2012, 235/236:359-366. doi: 10.1016/j.jhazmat.2012.08.017
|
56 |
LI Fangbai, LI Xiaomin, ZHOU Shungui,et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J]. Environmental Pollution, 2010, 158(5):1733-1740. doi: 10.1016/j.envpol.2009.11.020
|
57 |
CHEN Manjia, CAO Fang, LI Fangbai,et al. Anaerobic transformation of DDT related to iron(Ⅲ) reduction and microbial community structure in paddy soils[J]. Journal of Agricultural and Food Chemistry, 2013, 61(9):2224-2233. doi: 10.1021/jf305029p
|
58 |
BAE S, LEE W. Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(Ⅱ)[J]. Geochimica et Cosmochimica Acta, 2012, 85:170-186. doi: 10.1016/j.gca.2012.02.023
|
59 |
HUO Yingchao, LI Wenwei, CHEN Changbin,et al. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32[J]. Enzyme and Microbial Technology, 2016, 95:236-241. doi: 10.1016/j.enzmictec.2016.09.013
|
60 |
LOVLEY D R, LONERGAN D J. Anaerobic oxidation of toluene,phenol,and p-cresol by the dissimilatory iron-reducing organism,GS-15[J]. Applied and Environmental Microbiology, 1990, 56(6):1858-1864. doi: 10.1128/aem.56.6.1858-1864.1990
|
61 |
LUAN Fubo, LIU Yan, GRIFFIN A M,et al. Iron(Ⅲ)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2015, 49(3):1418-1426. doi: 10.1021/es504149y
|
62 |
|
|
LIANG Jiantao, LU Pengcheng, KOU Zhuoyao,et al. The enhanced reductive transformation for 2-nitrophenol removal coupled to the Fe(Ⅱ) adsorbed at the interfaces of clay minerals[J]. Acta Petrologica et Mineralogica, 2019, 38(6):775-781. doi: 10.3969/j.issn.1000-6524.2019.06.005
|
63 |
KLUPINSKI T P, CHIN Y P, TRAINA S J. Abiotic degradation of pentachloronitrobenzene by Fe(Ⅱ):Reactions on goethite and iron oxide nanoparticles[J]. Environmental Science & Technology, 2004, 38(16):4353-4360. doi: 10.1021/es035434j
|