| 1 |  TOR J M, LOVLEY D R . Anaerobic degradation of aromatic compounds coupled to Fe(Ⅲ) reduction by Ferroglobus placidus  [J]. Environmental Microbiology ,2001 ,3 (4):281-287. doi:10.1046/j.1462-2920.2001.00192.x | 
																													
																						| 2 |  CACCAVO F Jr, BLAKEMORE R P , LOVLEY D R . A hydrogen-oxidizing,Fe(Ⅲ)-reducing microorganism from the great bay estuary,new Hampshire[J]. Applied and Environmental Microbiology ,1992 ,58 (10):3211-3216. doi:10.1128/aem.58.10.3211-3216.1992 | 
																													
																						| 3 |  MYERS C R, NEALSON K H . Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science ,1988 ,240 (4857):1319-1321. doi:10.1126/science.240.4857.1319 | 
																													
																						| 4 |  LOVLEY D R, HOLMES D E , NEVIN K P . Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Advances in Microbial Physiology ,2004 ,49 :219-286. doi:10.1016/s0065-2911(04)49005-5 | 
																													
																						| 5 | 张涵,孙珊珊,董浩,等. 铁还原菌降解石油烃的研究进展[J]. 微生物学报,2020,60(6):1246-1258. | 
																													
																						|  |  ZHANG Han,  SUN Shanshan,  DONG Hao,et al. Degradation of petroleum hydrocarbons by using iron-reducing bacteria[J]. Acta Microbiologica Sinica,2020,60(6):1246-1258. | 
																													
																						| 6 | 胡敏,李芳柏. 土壤微生物铁循环及其环境意义[J]. 土壤学报,2014,51(4):683-698. | 
																													
																						|  |  HU Min,  LI Fangbai. Soil microbe mediated iron cycling and its environmental implication[J]. Acta Pedologica Sinica,2014,51(4):683-698. | 
																													
																						| 7 |  BEBLAWY S, BURSAC T , PAQUETE C ,et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis  [J]. Molecular Microbiology ,2018 ,109 (5):571-583. doi:10.1111/mmi.14067 | 
																													
																						| 8 |  MELTON E D, SWANNER E D , BEHRENS S ,et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology ,2014 ,12 (12):797-808. doi:10.1038/nrmicro3347 | 
																													
																						| 9 |  FREDRICKSON J K, ROMINE M F , BELIAEV A S ,et al. Towards environmental systems biology of Shewanella  [J]. Nature Reviews Microbiology ,2008 ,6 (8):592-603. doi:10.1038/nrmicro1947 | 
																													
																						| 10 |  JIANG Yongguang, SHI Meimei , SHI Liang . Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements[J]. Science China. Life Sciences ,2019 ,62 (10):1275-1286. doi:10.1007/s11427-018-9464-3 | 
																													
																						| 11 |  WANG Shu, WU Yu , AN Jingkun ,et al. Geobacter autogenically secretes fulvic acid to facilitate the dissimilated iron reduction and vivianite recovery[J]. Environmental Science & Technology ,2020 ,54 (17):10850-10858. doi:10.1021/acs.est.0c01404 | 
																													
																						| 12 |  STAMS A J M, DE BOK F A M , PLUGGE C M ,et al. Exocellular electron transfer in anaerobic microbial communities[J]. Environmental Microbiology ,2006 ,8 (3):371-382. doi:10.1111/j.1462-2920.2006.00989.x | 
																													
																						| 13 |  REGUERA G, MCCARTHY K D , MEHTA T ,et al. Extracellular electron transfer via microbial nanowires[J]. Nature ,2005 ,435 (7045):1098-1101. doi:10.1038/nature03661 | 
																													
																						| 14 |  LOVLEY D R, WALKER D J F . Geobacter protein nanowires[J]. Frontiers in Microbiology ,2019 ,10 :2078. doi:10.3389/fmicb.2019.02078 | 
																													
																						| 15 | 刘星,周顺桂. 微生物纳米导线的导电机制及功能[J]. 微生物学报,2020,60(9):2039-2061. | 
																													
																						|  |  LIU Xing,  ZHOU Shungui. Electrical conductivity and application of microbial nanowires[J]. Acta Microbiologica Sinica,2020,60(9):2039-2061. | 
																													
																						| 16 |  SUBRAMANIAN P, PIRBADIAN S , EL-NAGGAR M Y ,et al. Ultrastructure of Shewanella oneidensis  MR-1 nanowires revealed by electron cryotomography[J]. Proceedings of the National Academy of Sciences of the United States of America ,2018 ,115 (14):E3246-E3255. doi:10.1073/pnas.1718810115 | 
																													
																						| 17 |  WANG Fengbin, GU Yangqi , O’BRIEN J P ,et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers[J]. Cell ,2019 ,177 (2):361-369. doi:10.1016/j.cell.2019.03.029 | 
																													
																						| 18 |  FRIERDICH A J, HELGESON M , LIU Chengshuai ,et al. Iron atom exchange between hematite and aqueous Fe(Ⅱ)[J]. Environmental Science & Technology ,2015 ,49 (14):8479-8486. doi:10.1021/acs.est.5b01276 | 
																													
																						| 19 |  HANDLER R M, FRIERDICH A J , JOHNSON C M ,et al. Fe(Ⅱ)-catalyzed recrystallization of goethite revisited[J]. Environmental Science & Technology ,2014 ,48 (19):11302-11311. doi:10.1021/es503084u | 
																													
																						| 20 |  | 
																													
																						|  |  LIU Geng, GONG Yufeng , SU Yiming ,et al. Research progress of iron atom exchange between water-soluble Fe(Ⅱ) and typical iron(hydrogen) oxides[J]. Low Carbon World ,2019 ,9 (5):1-3. doi:10.3969/j.issn.2095-2066.2019.05.001 | 
																													
																						| 21 |  | 
																													
																						| 22 |  ZACHARA J M, KUKKADAPU R K , FREDRICKSON J K ,et al. Biomineralization of poorly crystalline Fe(Ⅲ) oxides by dissimilatory metal reducing bacteria(DMRB)[J]. Geomicrobiology Journal ,2002 ,19 (2):179-207. doi:10.1080/01490450252864271 | 
																													
																						| 23 |  HANSEL C M, BENNER S G , FENDORF S . Competing Fe(Ⅱ)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology ,2005 ,39 (18):7147-7153. doi:10.1021/es050666z | 
																													
																						| 24 | BAE S, LEE W . Biotransformation of lepidocrocite in the presence of quinones and flavins[J]. Geochimica et Cosmochimica Acta ,2013 ,114 :144-155. doi:10.1016/j.gca.2013.03.041 | 
																													
																						| 25 |  DHAKAL P, MATOCHA C J , HUGGINS F E ,et al. Nitrite reactivity with magnetite[J]. Environmental Science & Technology ,2013 ,47 (12):6206-6213. doi:10.1021/es304011w | 
																													
																						| 26 |  GRABB K C, BUCHWALD C , HANSEL C M ,et al. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(Ⅱ) and its production of nitrous oxide[J]. Geochimica et Cosmochimica Acta ,2017 ,196 :388-402. doi:10.1016/j.gca.2016.10.026 | 
																													
																						| 27 |  LU Yongsheng, HUANG Xueer , XU Lu ,et al. Elucidation of the nitrogen-transformation mechanism for nitrite removal using a microbial-mediated iron redox cycling system[J]. Journal of Water Process Engineering ,2020 ,33 :101016. doi:10.1016/j.jwpe.2019.101016 | 
																													
																						| 28 |  RAKSHIT S, MATOCHA C J , COYNE M S ,et al. Nitrite reduction by Fe(Ⅱ) associated with kaolinite[J]. International Journal of Environmental Science and Technology ,2016 ,13 (5):1329-1334. doi:10.1007/s13762-016-0971-x | 
																													
																						| 29 |  RAKSHIT S, MATOCHA C J , COYNE M S . Nitrite reduction by siderite[J]. Soil Science Society of America Journal ,2008 ,72 (4):1070-1077. doi:10.2136/sssaj2007.0296 | 
																													
																						| 30 |  LU Yongsheng, HE Yangyi , ZHOU Jizhi ,et al. Control strategy for nitrate reduction by sulfate green rust:The key role of copper and aluminum[J]. Desalination and Water Treatment ,2019 ,149 :98-104. doi:10.5004/dwt.2019.23795 | 
																													
																						| 31 |  LIU Tongxu, CHEN Dandan , LUO Xiaobo ,et al. Microbially mediated nitrate-reducing Fe(Ⅱ) oxidation:Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta ,2019 ,256 :97-115. doi:10.1016/j.gca.2018.06.040 | 
																													
																						| 32 |  LIU Tongxu, CHEN Dandan , LI Xiaomin ,et al. Microbially mediated coupling of nitrate reduction and Fe(Ⅱ) oxidation under anoxic conditions[J]. FEMS Microbiology Ecology ,2019 ,95 (4):fiz030. doi:10.1093/femsec/fiz030 | 
																													
																						| 33 |  | 
																													
																						|  |  YANG Han, ZHENG Dan , DENG Liangwei ,et al. Iron recycle and biological nitrogen removal driven by microorganisms[J]. China Biogas ,2019 ,37 (4):77-86. doi:10.3969/j.issn.1000-1166.2019.04.013 | 
																													
																						| 34 | 朱晓艳,袁宇翔,宋长春,等. 湿地土壤和沉积物异化铁还原过程研究进展[J]. 湿地科学,2020,18(1):122-128. | 
																													
																						|  |  ZHU Xiaoyan,  YUAN Yuxiang,  SONG Changchun,et al. Advance in dissimilatory iron reduction in wetland soils and sediments[J]. Wetland Science,2020,18(1):122-128. | 
																													
																						| 35 |  ROTHE M, KLEEBERG A , HUPFER M . The occurrence,identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J]. Earth-Science Reviews ,2016 ,158 :51-64. doi:10.1016/j.earscirev.2016.04.008 | 
																													
																						| 36 |  ROTHE M, FREDERICHS T , EDER M ,et al. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment:A novel analytical approach[J]. Biogeosciences ,2014 ,11 (18):5169-5180. doi:10.5194/bg-11-5169-2014 | 
																													
																						| 37 |  EGGER M, JILBERT T , BEHRENDS T ,et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments[J]. Geochimica et Cosmochimica Acta ,2015 ,169 :217-235. doi:10.1016/j.gca.2015.09.012 | 
																													
																						| 38 |  SUN Dongya, BIAN Yanhong , LIU Panpan ,et al. Electricity enhances biological Fe(Ⅲ) reduction and phosphorus recovery from FeP complex:Proof of concept and kinetic analysis[J]. ACS ES & T Engineering ,2021 ,1 (3):523-532. doi:10.1021/acsestengg.0c00211 | 
																													
																						| 39 | 郝晓地,周健,王崇臣. 蓝铁矿形成于污泥厌氧消化系统的验证与分析[J]. 中国给水排水,2018,34(13):7-13. | 
																													
																						|  |  HAO Xiaodi,  ZHOU Jian,  WANG Chongchen. Vivianite formed in anaerobic digestion of excess sludge:Verification and analysis[J]. China Water & Wastewater,2018,34(13):7-13. | 
																													
																						| 40 | 王聪,王舒,李楠. 石墨强化微生物异化铁还原合成蓝铁石的磷回收研究[J]. 环境科学学报,2019,39(10):3325-3332. | 
																													
																						|  |  WANG Cong,  WANG Shu,  LI Nan. Phosphorus recovery through vivianite production by graphite enhanced microbial dissimilatory iron reduction[J]. Acta Scientiae Circumstantiae,2019,39(10):3325-3332. | 
																													
																						| 41 |  YU Yangyang, CHENG Qianwen , SHA Chong ,et al. Size-controlled biosynthesis of FeS nanoparticles for efficient removal of aqueous Cr(Ⅵ)[J]. Chemical Engineering Journal ,2020 ,379 :122404. doi:10.1016/j.cej.2019.122404 | 
																													
																						| 42 |  | 
																													
																						| 43 |  | 
																													
																						|  |  QIAN Ziyan, WU Chuan , HE Xuan ,et al. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry ,2021 ,40 (3):834-850. doi:10.7524/j.issn.0254-6108.2020050901 | 
																													
																						| 44 | 罗海林,汤佳,周普雄,等. 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志,2018,37(6):1620-1627. | 
																													
																						|  |  LUO Hailin,  TANG Jia,  ZHOU Puxiong,et al. Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology,2018,37(6):1620-1627. | 
																													
																						| 45 |  SUN Wenjie, CHENG Kai , SUN K Y ,et al. Microbially mediated remediation of contaminated sediments by heavy metals:A critical review[J]. Current Pollution Reports ,2021 ,7 (2):201-212. doi:10.1007/s40726-021-00175-7 | 
																													
																						| 46 |  MOHAMED A, YU Lu , FANG Yu ,et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis  MR-1[J]. Chemosphere ,2020 ,247 :125902. doi:10.1016/j.chemosphere.2020.125902 | 
																													
																						| 47 |  BEHRENDS T, VAN CAPPELLEN P . Competition between enzymatic and abiotic reduction of uranium(Ⅵ) under iron reducing conditions[J]. Chemical Geology ,2005 ,220 (3/4):315-327. doi:10.1016/j.chemgeo.2005.04.007 | 
																													
																						| 48 |  O’LOUGHLIN E J, KELLY S D , KEMNER K M . XAFS investigation of the interactions of U(Ⅵ) with secondary mineralization products from the bioreduction of Fe(Ⅲ) oxides[J]. Environmental Science & Technology ,2010 ,44 (5):1656-1661. doi:10.1021/es9027953 | 
																													
																						| 49 |  VEERAMANI H, ALESSI D S , SUVOROVA E I ,et al. Products of abiotic U(Ⅵ) reduction by biogenic magnetite and vivianite[J]. Geochimica et Cosmochimica Acta ,2011 ,75 (9):2512-2528. doi:10.1016/j.gca.2011.02.024 | 
																													
																						| 50 |  LI Chenchen, YI Xiaoyun , DANG Zhi ,et al. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by shewanella oneidensis  MR-1[J]. Chemosphere ,2016 ,144 :2065-2072. doi:10.1016/j.chemosphere.2015.10.095 | 
																													
																						| 51 |  MUEHE E M, OBST M , HITCHCOCK A ,et al. Fate of Cd during microbial Fe(Ⅲ) mineral reduction by a novel and Cd-tolerant Geobacter species  [J]. Environmental Science & Technology ,2013 ,47 (24):14099-14109. doi:10.1021/es403365w | 
																													
																						| 52 |  SMEATON C M, FRYER B J , WEISENER C G . Intracellular precipitation of Pb by Shewanella putrefaciens  CN32 during the reductive dissolution of Pb-jarosite[J]. Environmental Science & Technology ,2009 ,43 (21):8086-8091. doi:10.1021/es901629c | 
																													
																						| 53 |  PECHER K, HADERLEIN S B , SCHWARZENBACH R P . Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology ,2002 ,36 (8):1734-1741. doi:10.1021/es011191o | 
																													
																						| 54 |  ELSNER M, SCHWARZENBACH R P , HADERLEIN S B . Reactivity of Fe(Ⅱ)-bearing minerals toward reductive transformation of organic contaminants[J]. Environmental Science & Technology ,2004 ,38 (3):799-807. doi:10.1021/es0345569 | 
																													
																						| 55 |  AMIR A, LEE W . Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin(Ⅲ) by nano-mackinawite[J]. Journal of Hazardous Materials ,2012 ,235/236 :359-366. doi:10.1016/j.jhazmat.2012.08.017 | 
																													
																						| 56 |  LI Fangbai, LI Xiaomin , ZHOU Shungui ,et al. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide[J]. Environmental Pollution ,2010 ,158 (5):1733-1740. doi:10.1016/j.envpol.2009.11.020 | 
																													
																						| 57 |  CHEN Manjia, CAO Fang , LI Fangbai ,et al. Anaerobic transformation of DDT related to iron(Ⅲ) reduction and microbial community structure in paddy soils[J]. Journal of Agricultural and Food Chemistry ,2013 ,61 (9):2224-2233. doi:10.1021/jf305029p | 
																													
																						| 58 | BAE S, LEE W . Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(Ⅱ)[J]. Geochimica et Cosmochimica Acta ,2012 ,85 :170-186. doi:10.1016/j.gca.2012.02.023 | 
																													
																						| 59 |  HUO Yingchao, LI Wenwei , CHEN Changbin ,et al. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens  CN32[J]. Enzyme and Microbial Technology ,2016 ,95 :236-241. doi:10.1016/j.enzmictec.2016.09.013 | 
																													
																						| 60 |  LOVLEY D R, LONERGAN D J . Anaerobic oxidation of toluene,phenol,and p-cresol by the dissimilatory iron-reducing organism,GS-15[J]. Applied and Environmental Microbiology ,1990 ,56 (6):1858-1864. doi:10.1128/aem.56.6.1858-1864.1990 | 
																													
																						| 61 |  LUAN Fubo, LIU Yan , GRIFFIN A M ,et al. Iron(Ⅲ)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens  CN32[J]. Environmental Science & Technology ,2015 ,49 (3):1418-1426. doi:10.1021/es504149y | 
																													
																						| 62 |  | 
																													
																						|  |  LIANG Jiantao, LU Pengcheng , KOU Zhuoyao ,et al. The enhanced reductive transformation for 2-nitrophenol removal coupled to the Fe(Ⅱ) adsorbed at the interfaces of clay minerals[J]. Acta Petrologica et Mineralogica ,2019 ,38 (6):775-781. doi:10.3969/j.issn.1000-6524.2019.06.005 | 
																													
																						| 63 |  KLUPINSKI T P, CHIN Y P , TRAINA S J . Abiotic degradation of pentachloronitrobenzene by Fe(Ⅱ):Reactions on goethite and iron oxide nanoparticles[J]. Environmental Science & Technology ,2004 ,38 (16):4353-4360. doi:10.1021/es035434j |