1 |
郑少奎,李晓锋. 城市污水处理厂出水中的药品和个人护理品[J]. 环境科学,2013,34(8):3316-3326.
|
|
ZHENG Shaokui, LI Xiaofeng. Pharmaceuticals and personal care products(PPCPs) in the effluent of sewage treatment plants[J]. Environmental Science,2013,34(8):3316-3326.
|
2 |
韦巧珍,林子雨. PPCPs的环境暴露、毒性效应及风险评估研究进展[J]. 环境科学与技术,2020,43(4):16-24.
|
|
WEI Qiaozhen, LIN Ziyu. Research progress in environmental exposure,toxic effect and risk assessment of pharmaceuticals and personal care products[J]. Environmental Science & Technology,2020,43(4):16-24.
|
3 |
SU Chao, CUI Yan, LIU Di,et al. Endocrine disrupting compounds,pharmaceuticals and personal care products in the aquatic environment of China:Which chemicals are the prioritized ones?[J]. Science of the Total Environment, 2020, 720:137652. doi: 10.1016/j.scitotenv.2020.137652
|
4 |
YANG Lu, WANG Tieyu, ZHOU Yunqiao,et al. Contamination,source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin,an intensive human intervention area,China[J]. Science of the Total Environment, 2021, 760:144080. doi: 10.1016/j.scitotenv.2020.144080
|
5 |
SUN Yu, LU Guanghua, LI Jin,et al. Multimedia distribution and trophic transfer of PPCPs in the middle and lower reaches of the Yarlung Zangbo River[J]. Environmental Pollution, 2021, 271:116408. doi: 10.1016/j.envpol.2020.116408
|
6 |
CANTWELL M G, KATZ D R, SULLIVAN J C,et al. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary[J]. Water Research, 2018, 137:335-343. doi: 10.1016/j.watres.2017.12.044
|
7 |
RATOLA N, CINCINELLI A, ALVES A,et al. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review[J]. Journal of Hazardous Materials, 2012, 239/240:1-18. doi: 10.1016/j.jhazmat.2012.05.040
|
8 |
YANG Yi, OK Y S, KIM K H,et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants:A review[J]. Science of the Total Environment, 2017, 596/597:303-320. doi: 10.1016/j.scitotenv.2017.04.102
|
9 |
王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展[J]. 四川师范大学学报(自然科学版),2020,43(2):143-172.
|
|
WANG Jianlong. Removal of pharmaceuticals and personal care products(PPCPs) from wastewater:A review[J]. Journal of Sichuan Normal University (Natural Science),2020,43(2):143-172.
|
10 |
卜庆伟,张鑫,余刚. 吸附法去除水中典型药物及个人护理品的研究进展[J]. 环境工程,2021,39(2):1-9.
|
|
BU Qingwei, ZHANG Xin, YU Gang. Research progress in removal of typical pharmaceuticals and personal care products by adsorption method[J]. Environmental Engineering,2021,39(2):1-9.
|
11 |
牛军峰. 水体中PPCPs的净化技术[C]//2021水处理技术创新与前言应用学术研讨会暨青年学者论坛论文集. 成都:工业水处理杂志社,2021: 7.
|
12 |
孙耀胜,么强,刘竞依,等. 生物炭材料在水体有机污染治理中的研究进展[J]. 环境科学与技术,2021,44(1):170-180.
|
|
SUN Yaosheng, YAO Qiang, LIU Jingyi,et al. Research progress of biochar materials in treatment of organic pollution in water[J]. Environmental Science & Technology,2021,44(1):170-180.
|
13 |
KRASUCKA P, PAN Bo, SIK OK Y,et al. Engineered biochar-A sustainable solution for the removal of antibiotics from water[J]. Chemical Engineering Journal,2021,405:126926.
|
14 |
PEIRIS C, GUNATILAKE S R, MLSNA T E,et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments:A critical review[J]. Bioresource Technology, 2017, 246:150-159. doi: 10.1016/j.biortech.2017.07.150
|
15 |
YANG Fan, JIANG Qun, ZHU Moran,et al. Effects of biochars and MWNTs on biodegradation behavior of atrazine by acinetobacter lwoffii DNS32[J]. Science of the Total Environment, 2017, 577:54-60. doi: 10.1016/j.scitotenv.2016.10.053
|
16 |
THINES K R, ABDULLAH E C, MUBARAK N M,et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application:A review[J]. Renewable and Sustainable Energy Reviews, 2017, 67:257-276. doi: 10.1016/j.rser.2016.09.057
|
17 |
QIAO Kaili, TIAN Weijun, BAI Jie,et al. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads[J]. Marine Pollution Bulletin, 2020, 159:111489. doi: 10.1016/j.marpolbul.2020.111489
|
18 |
MONDAL S, AIKAT K, HALDER G. Ranitidine hydrochloride sorption onto superheated steam activated biochar derived from mung bean husk in fixed bed column[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):488-497. doi: 10.1016/j.jece.2015.12.005
|
19 |
KEERTHANAN S, BHATNAGAR A, MAHATANTILA K,et al .Engineered tea-waste biochar for the removal of caffeine,a model compound in pharmaceuticals and personal care products (PPCPs),from aqueous media[J]. Environmental Technology & Innovation, 2020, 19:100847. doi: 10.1016/j.eti.2020.100847
|
20 |
|
|
SUN Jiancai, ZHOU Dandan, WANG Wei,et al. Research progress on modification of biochar and its adsorption and degradation behavior[J]. Environmental Chemistry, 2021, 40(5):1503-1513. doi: 10.7524/j.issn.0254-6108.2020102106
|
21 |
CHENG Ning, WANG Bing, WU Pan,et al. Adsorption of emerging contaminants from water and wastewater by modified biochar:A review[J]. Environmental Pollution, 2021, 273:116448. doi: 10.1016/j.envpol.2021.116448
|
22 |
CHAKRABORTY P, BANERJEE S, KUMAR S,et al. Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell:Isotherm,kinetics,thermodynamics and cost estimation[J]. Process Safety and Environmental Protection, 2018, 118:10-23. doi: 10.1016/j.psep.2018.06.015
|
23 |
RAJAPAKSHA U, VITHANAGE M, AHMAD M,et al. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar[J]. Journal of Hazardous Materials, 2015, 290:43-50. doi: 10.1016/j.jhazmat.2015.02.046
|
24 |
NAGHDI M, TAHERAN M, BRAR S K,et al. A green method for production of nanobiochar by ball milling-optimization and characterization[J]. Journal of Cleaner Production, 2017, 164:1394-1405. doi: 10.1016/j.jclepro.2017.07.084
|
25 |
WANG Wen, MA Xiulan, SUN Jing,et al. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar[J]. Spectroscopy Letters, 2019, 52(7):367-375. doi: 10.1080/00387010.2019.1648296
|
26 |
MEI Yanglu, XU Jin, ZHANG Yin,et al .Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325:124732. doi: 10.1016/j.biortech.2021.124732
|
27 |
HU Yi, ZHU Yuan, ZHANG Yi,et al .An efficient adsorbent:Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption[J]. Bioresource Technology, 2019, 288:121511. doi: 10.1016/j.biortech.2019.121511
|
28 |
|
|
WANG Wen, ZHANG Jing, MA Xiulan,et al .Mechanism of adsorption of enrofloxacin by metal modified corn stalk biochar[J]. Chinese Journal of Antibiotics, 2020, 45(6):577-583. doi: 10.3969/j.issn.1001-8689.2020.06.008
|
29 |
ATUGODA T, GUNAWARDANE C, AHMAD M,et al .Mechanistic interaction of ciprofloxacin on zeolite modified seaweed ( Sargassum crassifolium) derived biochar:Kinetics,isotherm and thermodynamics[J]. Chemosphere, 2021, 281:130676. doi: 10.1016/j.chemosphere.2021.130676
|
30 |
ZHANG Jinghuan, LU Mingyi, WAN Jun,et al .Effects of pH,dissolved humic acid and Cu 2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw[J]. Biochemical Engineering Journal, 2018, 130:104-112. doi: 10.1016/j.bej.2017.11.018
|
31 |
DANG Chenyuan, SUN Fengbin, JIANG Huan,et al. Pre-accumulation and in situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material:Intermediates,DFT calculation,and ecotoxicity[J]. Journal of Hazardous Materials, 2020, 400:123225. doi: 10.1016/j.jhazmat.2020.123225
|
32 |
HUANG Taobo, PAN Baozhu, JI Haodong,et al. Removal of 17 β-estradiol by activated charcoal supported titanate nanotubes (TNTs@AC) through initial adsorption and subsequent photo-degradation:Intermediates,DFT calculation,and mechanisms[J]. Water, 2020, 12(8):2121. doi: 10.3390/w12082121
|
33 |
MINALE M, GU Zaoli, GUADIE A,et al. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation:A review[J]. Journal of Environmental Management, 2020, 276:111310. doi: 10.1016/j.jenvman.2020.111310
|
34 |
FAYSAL HOSSAIN M, AKTHER N, ZHOU Yanbo. Recent advancements in graphene adsorbents for wastewater treatment:Current status and challenges[J]. Chinese Chemical Letters, 2020, 31(10):2525-2538. doi: 10.1016/j.cclet.2020.05.011
|
35 |
SONG Zhi, MA Yulong, LI Conger. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO 2/graphene nanocomposite[J]. Science of the Total Environment, 2019, 651:580-590. doi: 10.1016/j.scitotenv.2018.09.240
|
36 |
SUN Kaixuan, DONG Shunan, SUN Yuanyuan,et al. Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media[J]. Journal of Hazardous Materials, 2018, 348:92-99. doi: 10.1016/j.jhazmat.2018.01.032
|
37 |
DE OLIVEIRA P V, ZANELLA I, BULHÕES L O S,et al. Adsorption of 17 β-estradiol in graphene oxide through the competing methanol co-solvent:Experimental and computational analysis[J]. Journal of Molecular Liquids, 2021, 321:114738. doi: 10.1016/j.molliq.2020.114738
|
38 |
YANG Yuanxiu, HU Xinjiang, ZHAO Yunlin,et al. Decontamination of tetracycline by thiourea-dioxide-reduced magnetic graphene oxide:Effects of pH,ionic strength,and humic acid concentration[J]. Journal of Colloid and Interface Science, 2017, 495:68-77. doi: 10.1016/j.jcis.2017.01.075
|
39 |
RAJUMON R, ANAND J C, EALIAS A M,et al. Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide:An in-depth investigation on sonochemical factors[J]. Journal of Environmental Chemical Engineering, 2019, 7(6):103479. doi: 10.1016/j.jece.2019.103479
|
40 |
FENG Xianlu, QIU Bin, DANG Yan,et al. Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide[J]. Chemical Engineering Journal, 2021, 412:128710. doi: 10.1016/j.cej.2021.128710
|
41 |
TABRIZIAN P, MA Wen, BAKR A,et al. pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines[J]. Journal of Colloid and Interface Science, 2019, 534:549-562. doi: 10.1016/j.jcis.2018.09.034
|
42 |
ZOU Shanjuan, CHEN Yingfan, ZHANG Ying,et al. A hybrid sorbent of α-iron oxide/reduced graphene oxide:Studies for adsorptive removal of tetracycline antibiotics[J]. Journal of Alloys and Compounds, 2021, 863:158475. doi: 10.1016/j.jallcom.2020.158475
|
43 |
SHAN Danna, DENG Shubo, JIANG Chengxu,et al. Hydrophilic and strengthened 3D reduced graphene oxide/nano-Fe 3O 4 hybrid hydrogel for enhanced adsorption and catalytic oxidation of typical pharmaceuticals[J]. Environmental Science:Nano, 2018, 5(7):1650-1660. doi: 10.1039/c8en00422f
|
44 |
于飞,孙赛楠,韩生,等. 一种可见光催化再生的石墨烯基水凝胶吸附剂及其制备方法和应用:CN104772120A[P]. 2015-07-15.
|
45 |
赵兴兴,于水利,王哲. 氧氟沙星在碳纳米管上的吸附机制研究[J]. 环境科学,2014,35(2):663-668.
|
|
ZHAO Xingxing, YU Shuili, WANG Zhe. Sorption mechanism of ofloxacin by carbon nanotubes[J]. Environmental Science,2014,35(2):663-668.
|
46 |
LIU Feifei, ZHAO Jian, WANG Shuguang,et al. Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes[J]. Environmental Science & Technology, 2014, 48(22):13197-13206. doi: 10.1021/es5034684
|
47 |
YOO D K, BHADRA B N, JHUNG S H. Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks:Contribution of functional groups[J]. Journal of Hazardous Materials, 2021, 403:123655. doi: 10.1016/j.jhazmat.2020.123655
|
48 |
HUANG Lijin, SHEN Rujia, SHUAI Qin. Adsorptive removal of pharmaceuticals from water using metal-organic frameworks:A review[J]. Journal of Environmental Management, 2021, 277:111389. doi: 10.1016/j.jenvman.2020.111389
|
49 |
DU Chunyan, ZHANG Zhuo, YU Guanlong,et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis[J]. Chemosphere, 2021, 272:129501. doi: 10.1016/j.chemosphere.2020.129501
|
50 |
TROYANO J, ÇAMUR C, GARZÓN-TOVAR L,et al. Spray-drying synthesis of MOFs,COFs,and related composites[J]. Accounts of Chemical Research, 2020, 53(6):1206-1217. doi: 10.1021/acs.accounts.0c00133
|
51 |
CAI Guorui, MA Xing, KASSYMOVA M,et al. Large-scale production of hierarchically porous metal-organic frameworks by a reflux-assisted post-synthetic ligand substitution strategy[J]. ACS Central Science, 2021, 7(8):1434-1440. doi: 10.1021/acscentsci.1c00743
|
52 |
|
|
SUN Xuejiao, WANG Chenpeng, PAN Xiaoyang,et al. MOFs-derived porous carbon materials for gas adsorption and separation[J]. Chinese Science Bulletin, 2021, 66(27):3590-3603. doi: 10.1360/tb-2020-1670
|
53 |
PRASETYA N, LI Kang. MOF-808 and its hollow fibre adsorbents for efficient diclofenac removal[J]. Chemical Engineering Journal, 2021, 417:129216. doi: 10.1016/j.cej.2021.129216
|
54 |
WU Chunsheng, XIONG Zhenhu, LI Chen,et al. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution[J]. RSC Advances, 2015, 5(100):82127-82137. doi: 10.1039/c5ra15497a
|
55 |
HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks[J]. Chemical Engineering Journal, 2016, 284:1406-1413. doi: 10.1016/j.cej.2015.08.087
|
56 |
SONG J Y, JHUNG S H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups:Quantitative analyses of H-bonding in adsorption[J]. Chemical Engineering Journal, 2017, 322:366-374. doi: 10.1016/j.cej.2017.04.036
|
57 |
HU Tianding, JIA Qingming, HE Shanchuan,et al. Novel functionalized metal-organic framework MIL-101 adsorbent for capturing oxytetracycline[J]. Journal of Alloys and Compounds, 2017, 727:114-122. doi: 10.1016/j.jallcom.2017.08.116
|
58 |
SEO P W, KHAN N A, JHUNG S H. Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine[J]. Chemical Engineering Journal, 2017, 315:92-100. doi: 10.1016/j.cej.2017.01.021
|
59 |
Yuancai LÜ, ZHANG Rongshuo, ZENG Shuilan,et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal-organic framework:Adsorption behavior and synergetic mechanism[J]. Chemical Engineering Journal, 2018, 339:359-368. doi: 10.1016/j.cej.2018.01.139
|
60 |
SONG J Y, AHMED I, SEO P W,et al. UiO-66-type metal-organic framework with free carboxylic acid:Versatile adsorbents via H-bond for both aqueous and nonaqueous phases[J]. ACS Applied Materials & Interfaces, 2016, 8(40):27394-27402. doi: 10.1021/acsami.6b10098
|
61 |
WANG Kaining, WU Jiaojiao, ZHU Minglan,et al. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH) 2/GO metal-organic framework composites[J]. Journal of Solid State Chemistry, 2020, 284:121200. doi: 10.1016/j.jssc.2020.121200
|
62 |
LI Zhengjie, MA Mengying, ZHANG Shanshan,et al. Efficiently removal of ciprofloxacin from aqueous solution by MIL-101(Cr)-HSO 3:The enhanced electrostatic interaction[J]. Journal of Porous Materials, 2020, 27(1):189-204. doi: 10.1007/s10934-019-00802-1
|
63 |
YUAN Ning, GONG Xinrui, SUN Wenduo,et al. Advanced applications of Zr-based MOFs in the removal of water pollutants[J]. Chemosphere, 2021, 267:128863. doi: 10.1016/j.chemosphere.2020.128863
|
64 |
ZHANG Yuxi, RUAN Qunqun, PENG Yaguang,et al. Synthesis of hierarchical-pore metal-organic framework on liter scale for large organic pollutants capture in wastewater[J]. Journal of Colloid and Interface Science, 2018, 525:39-47. doi: 10.1016/j.jcis.2018.04.063
|
65 |
AKPINAR I, YAZAYDIN A O. Rapid and efficient removal of carbamazepine from water by UiO-67[J]. Industrial & Engineering Chemistry Research, 2017, 56(51):15122-15130. doi: 10.1021/acs.iecr.7b03208
|
66 |
YIN Yue, SHI Mengqi, REN Yi,et al. Wrinkle structure on multifunctional MOFs to facilitate PPCPs adsorption in wastewater[J]. Chemical Engineering Journal, 2020, 387:124196. doi: 10.1016/j.cej.2020.124196
|
67 |
AZHAR M R, ABID H R, PERIASAMY V,et al. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment[J]. Journal of Colloid and Interface Science, 2017, 500:88-95. doi: 10.1016/j.jcis.2017.04.001
|
68 |
YANG Zhaohui, CAO Jiao, CHEN Yupeng,et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(Ⅵ) from aqueous solution[J]. Microporous and Mesoporous Materials, 2019, 277:277-285. doi: 10.1016/j.micromeso.2018.11.014
|
69 |
GUO Zhiqiang, YANG Fanjun, YANG Rongrong,et al. Preparation of novel ZnO-NP@Zn-MOF-74 composites for simultaneous removal of copper and tetracycline from aqueous solution[J]. Separation and Purification Technology, 2021, 274:118949. doi: 10.1016/j.seppur.2021.118949
|
70 |
ZHUO Ning, LAN Yaqian, YANG Weiben,et al. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads[J]. Separation and Purification Technology, 2017, 177:272-280. doi: 10.1016/j.seppur.2016.12.041
|
71 |
ZHAO Rui, MA Tingting, ZHAO Shuai,et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal, 2020, 382:122893. doi: 10.1016/j.cej.2019.122893
|
72 |
JIN E, LEE S, KANG E,et al. Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products[J]. Coordination Chemistry Reviews, 2020, 425:213526. doi: 10.1016/j.ccr.2020.213526
|
73 |
YOHANNES A, LI Jing, YAO Shun. Various metal organic frameworks combined with imidazolium,quinolinum and benzothiazolium ionic liquids for removal of three antibiotics from water[J]. Journal of Molecular Liquids, 2020, 318:114304. doi: 10.1016/j.molliq.2020.114304
|
74 |
KHAN N A, JUNG B K, HASAN Z,et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks[J]. Journal of Hazardous Materials, 2015, 282:194-200. doi: 10.1016/j.jhazmat.2014.03.047
|
75 |
GAO Yanxin, XIA Jing, LIU Dengchao,et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light[J]. Chemical Engineering Journal, 2019, 378:122118. doi: 10.1016/j.cej.2019.122118
|
76 |
WU Jiafei, FANG Xiuxuan, ZHU Yingzhi,et al. Well-designed TiO 2@UiO-66-NH 2 nanocomposite with superior photocatalytic activity for tetracycline under restricted space[J]. Energy & Fuels, 2020, 34(10):12911-12917. doi: 10.1021/acs.energyfuels.0c02485
|
77 |
DU Qiuzheng, WU Pu, SUN Yiyang,et al. Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH 2-UiO-66 composites[J]. Chemical Engineering Journal, 2020, 390:124614. doi: 10.1016/j.cej.2020.124614
|
78 |
ZHANG Ying, ZHOU Jiabin, CHEN Xin,et al. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs:Synergistic effect and degradation pathway[J]. Chemical Engineering Journal, 2019, 369:745-757. doi: 10.1016/j.cej.2019.03.108
|
79 |
SANTAMARÍA L, VICENTE M A, KORILI S A,et al. Progress in the removal of pharmaceutical compounds from aqueous solution using layered double hydroxides as adsorbents:A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(6):104577. doi: 10.1016/j.jece.2020.104577
|
80 |
杨博凯,刘东方,吕建波,等. 新型Zn-Fe-LDH对磷酸盐的吸附与去除机理研究[J]. 水处理技术,2015,41(12):47-51.
|
|
YANG Bokai, LIU Dongfang, Jianbo LÜ,et al. Adsorption and removal mechanism of phosphate by a novel Zn-Fe-LDH[J]. Technology of Water Treatment,2015,41(12):47-51.
|
81 |
AMAMRA S, DJELLOULI B, ELKOLLI H,et al. Synthesis and characterization of Layered Double Hydroxides aimed at encapsulation of sodium diclofenac:Theoretical and experimental study[J]. Journal of Molecular Liquids, 2021, 338:116677. doi: 10.1016/j.molliq.2021.116677
|
82 |
BOUAZIZ Z, SOUSSAN L, JANOT J M,et al. Dual role of layered double hydroxide nanocomposites on antibacterial activity and degradation of tetracycline and oxytetracyline[J]. Chemosphere, 2018, 206:175-183. doi: 10.1016/j.chemosphere.2018.05.003
|
83 |
ELHALIL A, FARNANE M, MACHROUHI A,et al. Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants[J]. Journal of Science:Advanced Materials and Devices, 2018, 3(2):188-195. doi: 10.1016/j.jsamd.2018.03.005
|
84 |
SUI Minghao, ZHOU Youfei, SHENG Li,et al. Adsorption of norfloxacin in aqueous solution by Mg-Al layered double hydroxides with variable metal composition and interlayer anions[J]. Chemical Engineering Journal, 2012, 210:451-460. doi: 10.1016/j.cej.2012.09.026
|
85 |
ZAHER A, TAHA M, MAHMOUD R K. Possible adsorption mechanisms of the removal of tetracycline from water by La-doped Zn-Fe-layered double hydroxide[J]. Journal of Molecular Liquids, 2021, 322:114546. doi: 10.1016/j.molliq.2020.114546
|
86 |
KUMARI P,PAL B, DAS R K .Superior adsorptive removal of eco-toxic drug diclofenac sodium by Zn-Al LDH⋅ xBi 2O 3 layer double hydroxide composites[J]. Applied Clay Science, 2021, 208:106119. doi: 10.1016/j.clay.2021.106119
|
87 |
GUPTA K, HUO Jiangbo, YANG J C E,et al . (MoS 4) 2-intercalated CAMoS 4⋅LDH material for the efficient and facile sequestration of antibiotics from aqueous solution[J]. Chemical Engineering Journal, 2019, 355:637-649. doi: 10.1016/j.cej.2018.08.200
|
88 |
LI Jia, ZHANG Ning, NG D H L. Synthesis of a 3D hierarchical structure of γ-AlO(OH)/Mg-Al-LDH/C and its performance in organic dyes and antibiotics adsorption[J]. Journal of Materials Chemistry A, 2015, 3(42):21106-21115. doi: 10.1039/c5ta04497a
|
89 |
WANG Xuemei, ZHOU Wei, WANG Chenlu,et al. Cotton fiber-supported layered double hydroxides for the highly efficient adsorption of anionic organic pollutants in water[J]. New Journal of Chemistry, 2018, 42(12):9463-9471. doi: 10.1039/c8nj00678d
|
90 |
DE SOUZA DOS SANTOS G E, IDE A H, DUARTE J L S,et al .Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar[J]. Powder Technology, 2020, 364:229-240. doi: 10.1016/j.powtec.2020.01.083
|
91 |
SANTOS LINS P V, HENRIQUE D C, IDE A H,et al. Evaluation of caffeine adsorption by MgAl-LDH/biochar composite[J]. Environmental Science and Pollution Research, 2019, 26(31):31804-31811. doi: 10.1007/s11356-019-06288-3
|
92 |
ROSSET M, SFREDDO L W, PEREZ-LOPEZ O W,et al. Effect of concentration in the equilibrium and kinetics of adsorption of acetylsalicylic acid on ZnAl layered double hydroxide[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):103991. doi: 10.1016/j.jece.2020.103991
|
93 |
GHOLAMI P, KHATAEE A, SOLTANI R D C,et al. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite[J]. Journal of Hazardous Materials, 2020, 382:121070. doi: 10.1016/j.jhazmat.2019.121070
|
94 |
程爱华,钱大鹏. 棉花模板Zn/Ti/Fe-LDO吸附水中硝酸盐机制[J]. 化工学报,2018,69(12):5283-5291.
|
|
CHENG Aihua, QIAN Dapeng. Adsorption mechanism of nitrate on cotton template Zn/Ti/Fe layered double oxide in water[J]. CIESC Journal,2018,69(12):5283-5291.
|
95 |
孙垦. 天然黏土矿物的有机改性及其对阴离子型PPCPs的吸附研究[D]. 北京:中国地质大学(北京),2016.
|
|
SUN Ken. Organic modification of natural clay minerals and the adsorption study of anionic PPCPs[D]. Beijing:China University of Geosciences,2016.
|
96 |
周夏. 基于高分子吸附剂功能基团调控的PPCPs净化技术与机理[D]. 南京:南京师范大学,2019.
|
|
ZHOU Xia. Technology and mechanism of PPCPs removal:Based on functional groups regulation of polymeric adsorbent[D]. Nanjing:Nanjing Normal University,2019.
|
97 |
SEPEHR M N, AL-MUSAWI T J, GHAHRAMANI E,et al. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution[J]. Arabian Journal of Chemistry, 2017, 10(5):611-623. doi: 10.1016/j.arabjc.2016.07.003
|