1 |
CHEN Guanyi, YU Yang, LIANG Lan,et al. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system:A critical review[J]. Journal of Hazardous Materials,2021,408:124461. doi:10.1016/j.jhazmat.2020.124461
doi: 10.1016/j.jhazmat.2020.124461
URL
|
2 |
ANJALI R, SHANTHAKUMAR S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes[J]. Journal of Environmental Management,2019,246:51-62. doi:10.1016/j.jenvman.2019.05.090
doi: 10.1016/j.jenvman.2019.05.090
URL
|
3 |
WEI Zhidong, LIU Junying, SHANGGUAN Wenfeng. A review on photocatalysis in antibiotic wastewater:Pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis,2020,41(10):1440-1450.
|
4 |
SALCEDO D E, LEE J H, HA U H,et al. The effects of antibiotics on the biofilm formation and antibiotic resistance gene transfer[J]. Desalination and Water Treatment,2015,54(13):3582-3588. doi:10.1080/19443994.2014.923206
doi: 10.1080/19443994.2014.923206
URL
|
5 |
HILLER C X, HÜBNER U, FAJNOROVA S,et al. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes:A review[J]. Science of the Total Environment,2019,685:596-608.
|
6 |
RIVERA-UTRILLA J, SÁNCHEZ-POLO M, FERRO-GARCÍA M Á,et al. Pharmaceuticals as emerging contaminants and their removal from water. A review[J]. Chemosphere,2013,93(7):1268-1287. doi:10.1016/j.chemosphere.2013.07.059
doi: 10.1016/j.chemosphere.2013.07.059
URL
|
7 |
BALAKRISHNA K, RATH A, PRAVEENKUMARREDDY Y,et al. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies[J]. Ecotoxicology and Environmental Safety,2017,137:113-120. doi:10.1016/j.ecoenv.2016.11.014
doi: 10.1016/j.ecoenv.2016.11.014
URL
|
8 |
VON WINTERSDORFF C J H, PENDERS J, VAN NIEKERK J M,et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Frontiers in Microbiology,2016,7:173. doi:10.3389/fmicb.2016.00173
doi: 10.3389/fmicb.2016.00173
URL
|
9 |
NGUYEN A Q, VU H P, NGUYEN L N,et al. Monitoring antibiotic resistance genes in wastewater treatment:Current strategies and future challenges[J]. Science of the Total Environment,2021,783:146964.
|
10 |
GHUGE S P, SAROHA A K. Catalytic ozonation for the treatment of synthetic and industrial effluents-application of mesoporous materials:A review[J]. Journal of Environmental Management,2018,211:83-102.
|
11 |
IKEURA H, KOBAYASHI F, TAMAKI M. Removal of residual pesticide,fenitrothion,in vegetables by using ozone microbubbles generated by different methods[J]. Journal of Food Engineering,2011,103(3):345-349.
|
12 |
LOFRANO G, PEDRAZZANI R, LIBRALATO G,et al. Advanced oxidation processes for antibiotics removal:A review[J]. Current Organic Chemistry,2017,21(12):1054-1067.
|
13 |
KRÅKSTRÖM M, SAEID S, TOLVANEN P,et al. Catalytic ozonation of the antibiotic sulfadiazine:Reaction kinetics and transformation mechanisms[J]. Chemosphere,2020,247:125853.
|
14 |
IAKOVIDES I C, MICHAEL-KORDATOU I, MOREIRA N F F,et al. Continuous ozonation of urban wastewater:Removal of antibiotics,antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity[J]. Water Research,2019,159:333-347.
|
15 |
KANSAL S K, KUNDU P, SOOD S,et al. Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles[J]. New Journal of Chemistry,2014,38(7):3220-3226. doi:10.1039/c3nj01619f
doi: 10.1039/c3nj01619f
URL
|
16 |
ESPÍNDOLA J C, CRISTÓVÃO R O, SANTOS S G S,et al. Intensification of heterogeneous TiO2 photocatalysis using the NETmix mili-photoreactor under microscale illumination for oxytetracycline oxidation[J]. Science of the Total Environment,2019,681:467-474. doi:10.1016/j.scitotenv.2019.05.066
doi: 10.1016/j.scitotenv.2019.05.066
URL
|
17 |
Jinze LYU, ZHOU Zhen, WANG Yanhong,et al. Platinum-enhanced amorphous TiO2-filled mesoporous TiO2 crystals for the photocatalytic mineralization of tetracycline hydrochloride[J]. Journal of Hazardous Materials,2019,373:278-284. doi:10.1016/j.jhazmat.2019.03.096
doi: 10.1016/j.jhazmat.2019.03.096
URL
|
18 |
WANG Jianlong, ZHUAN Run. Degradation of antibiotics by advanced oxidation processes:An overview[J]. Science of the Total Environment,2020,701:135023.
|
19 |
BAYAN E M, PUSTOVAYA L E, VOLKOVA M G. Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems[J]. Environmental Technology & Innovation,2021,24:101822. doi:10.1016/j.eti.2021.101822
doi: 10.1016/j.eti.2021.101822
URL
|
20 |
王静,王华幸. 提高TiO2改性技术研究进展[J]. 科技资讯,2009,7(1):3.
|
|
WANG Jing, WANG Huaxing. Research progress of improving TiO2 modification technology[J]. Science & Technology Information,2009,7(1):3.
|
21 |
ÇAĞLAR YıLMAZ H, AKGEYIK E, BOUGARRANI S,et al. Photocatalytic degradation of amoxicillin using Co-doped TiO2 synthesized by reflux method and monitoring of degradation products by LC-MS/MS[J]. Journal of Dispersion Science and Technology,2020,41(3):414-425. doi:10.1080/01932691.2019.1583576
doi: 10.1080/01932691.2019.1583576
URL
|
22 |
BOXI S S, PARIA S. Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres[J]. RSC Advances,2015,5(47):37657-37668. doi:10.1039/c5ra03421c
doi: 10.1039/c5ra03421c
URL
|
23 |
GURKAN Y Y, TURKTEN N, HATIPOGLU A,et al. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation:Prediction of the reaction paths via conceptual DFT[J]. Chemical Engineering Journal,2012,184:113-124.
|
24 |
CHEN Meijuan, CHU W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis[J]. Journal of Hazardous Materials,2012,219/220:183-189. doi:10.1016/j.jhazmat.2012.03.074
doi: 10.1016/j.jhazmat.2012.03.074
URL
|
25 |
SHARMA S, UMAR A, MEHTA S K,et al. Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites[J]. New Journal of Chemistry,2018,42:7445-7456. doi:10.1039/c7nj05118b
doi: 10.1039/c7nj05118b
URL
|
26 |
AHMADI M, RAMEZANI MOTLAGH H, JAAFARZADEH N,et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management,2017,186:55-63. doi:10.1016/j.jenvman.2016.09.088
doi: 10.1016/j.jenvman.2016.09.088
URL
|
27 |
ALI A, SHOEB M, LI Yi,et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica(SBA 15)/TiO2 nanocomposite under visible-light irradiation[J]. Journal of Molecular Liquids,2021,324:114696.
|
28 |
YANG Xiuru, CHEN Zhi, ZHAO Wan,et al. Recent advances in photodegradation of antibiotic residues in water[J]. Chemical Engineering Journal,2021,405:126806. doi:10.1016/j.cej.2020.126806
doi: 10.1016/j.cej.2020.126806
URL
|
29 |
ZHAO Fenfen, RONG Yuefei, WAN Junmin,et al. High photocatalytic performance of carbon quantum dots/TNTs composites for enhanced photogenerated charges separation under visible light[J]. Catalysis Today,2018,315:162-170. doi:10.1016/j.cattod.2018.02.019
doi: 10.1016/j.cattod.2018.02.019
URL
|
30 |
KUMAR A, RANA A, SHARMA G,et al. Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants[J]. Journal of Molecular Liquids,2019,290:111177. doi:10.1016/j.molliq.2019.111177
doi: 10.1016/j.molliq.2019.111177
URL
|
31 |
LIU Xiaocheng, ZHOU Yaoyu, ZHANG Jiachao,et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics:Mechanism study and research gaps[J]. Chemical Engineering Journal,2018,347:379-397.
|
32 |
MA Jianqing, XU Lili, SHEN Chensi,et al. Fe-N-graphene wrapped Al2O3/pentlandite from microalgae:High Fenton catalytic efficiency from enhanced Fe3+ reduction[J]. Environmental Science & Technology,2018,52(6):3608-3614.
|
33 |
韩金栋,蒋进元,李君超,等. 纳米Fe/Co催化降解土霉素效果及影响因素研究[J]. 环境科学研究,2020,33(10):2335-2341.
|
|
HAN Jindong, JIANG Jinyuan, LI Junchao,et al. Oxidative degradation of oxytetracycline using nano Fe/Co catalyst and H2O2 under Fenton conditions[J]. Research of Environmental Sciences,2020,33(10):2335-2341.
|
34 |
GANIYU S O, ZHOU Minghua, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes:A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B:Environmental,2018,235:103-129.
|
35 |
CATALÁ M, DOMÍNGUEZ-MORUECO N, MIGENS A,et al. Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment[J]. Science of the Total Environment,2015,520:198-205. doi:10.1016/j.scitotenv.2015.03.042
doi: 10.1016/j.scitotenv.2015.03.042
URL
|
36 |
SHEMER H, KUNUKCU Y K, LINDEN K G. Degradation of the pharmaceutical Metronidazole via UV,Fenton and photo-Fenton processes[J]. Chemosphere,2006,63(2):269-276.
|
37 |
JO W K, TAYADE R J. New generation energy-efficient light source for photocatalysis:LEDs for environmental applications[J]. Industrial & Engineering Chemistry Research,2014,53(6):2073-2084.
|
38 |
PLIEGO G, XEKOUKOULOTAKIS N, VENIERI D,et al. Complete degradation of the persistent anti-depressant sertraline in aqueous solution by solar photo-Fenton oxidation[J]. Journal of Chemical Technology & Biotechnology,2014,89(6):814-818. doi:10.1002/jctb.4314
doi: 10.1002/jctb.4314
URL
|
39 |
DOS SANTOS A J, KRONKA M S, FORTUNATO G V,et al. Recent advances in electrochemical water technologies for the treatment of antibiotics:A short review[J]. Current Opinion in Electrochemistry,2021,26:100674.
|
40 |
EL-GHENYMY A, GARRIDO J A, CENTELLAS F,et al. Electro-Fenton and photoelectro-Fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode[J]. The Journal of Physical Chemistry. A,2012,116(13):3404-3412. doi:10.1021/jp300442y
doi: 10.1021/jp300442y
URL
|
41 |
ZHANG Menghui, DONG Hui, ZHAO Liang,et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment,2019,670:110-121. doi:10.1016/j.scitotenv.2019.03.180
doi: 10.1016/j.scitotenv.2019.03.180
URL
|
42 |
周飞. γ辐照和超声空化降解水中磺胺嘧啶与四环素的研究[D]. 南京:南京信息工程大学,2012.
|
|
ZHOU Fei. Study of sulfadiazine and tetracycline degradation in aqueous solution by gamma irradiation and ultrasonic cavitation[D]. Nanjing:Nanjing University of Information Science & Technology,2012.
|
43 |
BARIK A J, GOGATE P R. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs[J]. Ultrasonics Sonochemistry,2018,40:383-394. doi:10.1016/j.ultsonch.2017.07.029
doi: 10.1016/j.ultsonch.2017.07.029
URL
|
44 |
LIU Pengyun, WU Zhilin, ABRAMOVA A V,et al. Sonochemical processes for the degradation of antibiotics in aqueous solutions:A review[J]. Ultrasonics Sonochemistry,2021,74:105566.
|
45 |
VILLEGAS-GUZMAN P, SILVA-AGREDO J, GIRALDO-AGUIRRE A L,et al. Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin[J]. Ultrasonics Sonochemistry,2015,22:211-219. doi:10.1016/j.ultsonch.2014.07.006
doi: 10.1016/j.ultsonch.2014.07.006
URL
|
46 |
WANG Chikang, HUANG Boming. Degradation of tetracycline by advanced oxidation procsses:Sono-Fenton and ozonation processes[J].Desalination and water treatment,2017,96:161-168.
|
47 |
GUO Wanqian, YIN Renli, ZHOU Xianjiao,et al. Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal:Impact factors and degradation process[J]. Desalination and Water Treatment,2016,57(44):21015-21022.
|
48 |
KıDAK R, DOĞAN Ş. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water[J]. Ultrasonics Sonochemistry,2018,40:131-139. doi:10.1016/j.ultsonch.2017.01.033
doi: 10.1016/j.ultsonch.2017.01.033
URL
|
49 |
MONTEAGUDO J M, EL-TALIAWY H, DURÁN A,et al. Sono-activated persulfate oxidation of diclofenac:Degradation,kinetics,pathway and contribution of the different radicals involved[J]. Journal of Hazardous Materials,2018,357:457-465.
|
50 |
YIN Renli, GUO Wanqian, WANG Huazhe,et al. Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation:Performances and mechanisms[J]. Chemical Engineering Journal,2018,335:145-153.
|
51 |
SAFARI G H, NASSERI S, MAHVI A H,et al. Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process[J]. Journal of Environmental Health Science & Engineering,2015,13:76. doi:10.1186/s40201-015-0234-7
doi: 10.1186/s40201-015-0234-7
URL
|
52 |
WANG Chao, QU Guangzhou, WANG Tiecheng,et al. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles[J]. Chemical Engineering Journal,2018,346:159-170. doi:10.1016/j.cej.2018.03.149
doi: 10.1016/j.cej.2018.03.149
URL
|
53 |
BABIĆ S, ĆURKOVIĆ L, LJUBAS D,et al. TiO2 assisted photocatalytic degradation of macrolide antibiotics[J]. Current Opinion in Green and Sustainable Chemistry,2017,6:34-41. doi:10.1016/j.cogsc.2017.05.004
doi: 10.1016/j.cogsc.2017.05.004
URL
|
54 |
SERNA-GALVIS E A, BERRIO-PERLAZA K E, TORRES-PALMA R A. Electrochemical treatment of penicillin,cephalosporin,and fluoroquinolone antibiotics via active chlorine:Evaluation of antimicrobial activity,toxicity,matrix,and their correlation with the degradation pathways[J]. Environmental Science and Pollution Research International,2017,24(30):23771-23782.
|
55 |
ZHOU Chunshuang, WU Jiwen, DONG Lili,et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate[J]. Journal of Hazardous Materials,2020,388:122070. doi:10.1016/j.jhazmat.2020.122070
doi: 10.1016/j.jhazmat.2020.122070
URL
|
56 |
WANG Jianlong, CHU Libing, WOJNÁROVITS L,et al. Occurrence and fate of antibiotics,antibiotic resistant genes(ARGs) and antibiotic resistant bacteria(ARB) in municipal wastewater treatment plant:An overview[J]. Science of the Total Environment,2020,744:140997.
|
57 |
BOOPATHY R. Presence of Methicillin resistant Staphylococcus aureus(MRSA) in sewage treatment plant[J]. Bioresource Technology,2017,240:144-148. doi:10.1016/j.biortech.2017.02.093
doi: 10.1016/j.biortech.2017.02.093
URL
|
58 |
杨莲. 抗生素抗性基因在城镇污水处理系统的分布与去除机制研究[D]. 哈尔滨:哈尔滨工业大学,2019. doi:10.18057/icass2018.p.094
doi: 10.18057/icass2018.p.094
URL
|
|
YANG Lian. Distribution and removal mechanism of antibiotic resistance genes in municipal wastewater treatment system[D]. Harbin:Harbin Institute of Technology,2019. doi:10.18057/icass2018.p.094
doi: 10.18057/icass2018.p.094
URL
|
59 |
FERRO G, GUARINO F, CICATELLI A,et al. β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2 [J]. Journal of Hazardous Materials,2017,323:426-433. doi:10.1016/j.jhazmat.2016.03.014
doi: 10.1016/j.jhazmat.2016.03.014
URL
|
60 |
ZHANG Yingying, ZHUANG Yao, GENG Jinju,et al. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection[J]. Science of the Total Environment,2015,512/513:125-132. doi:10.1016/j.scitotenv.2015.01.028
doi: 10.1016/j.scitotenv.2015.01.028
URL
|
61 |
ZHUANG Yao, REN Hongqiang, GENG Jinju,et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination,ultraviolet,and ozonation disinfection[J]. Environmental Science and Pollution Research International,2015,22(9):7037-7044.
|
62 |
HOU Aiming, YANG Dong, MIAO Jing,et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps[J]. Water Research,2019,156:366-371. doi:10.1016/j.watres.2019.03.035
doi: 10.1016/j.watres.2019.03.035
URL
|
63 |
LIU Shanshan, QU Hongmei, YANG Dong,et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research,2018,136:131-136. doi:10.1016/J.WATRES.2018.02.036
doi: 10.1016/J.WATRES.2018.02.036
URL
|
64 |
CHENG Xiaoxiao, XU Jiannong, SMITH G,et al. Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment[J]. Chemosphere,2021,271:129563. doi:10.1016/j.chemosphere.2021.129563
doi: 10.1016/j.chemosphere.2021.129563
URL
|
65 |
LI Shengnan, ZHANG Chaofan, LI Fengxiang,et al. Technologies towards antibiotic resistance genes(ARGs) removal from aquatic environment:A critical review[J]. Journal of Hazardous Materials,2021,411:125148.
|
66 |
YOON Y, HE Huan, DODD M C,et al. Degradation and deactivation of plasmid-encoded antibiotic resistance genes during exposure to ozone and chlorine[J]. Water Research,2021,202:117408. doi:10.1016/j.watres.2021.117408
doi: 10.1016/j.watres.2021.117408
URL
|
67 |
ZHAO Qian, LI Mei, ZHANG Kefeng,et al. Effect of ultrasound irradiation combined with ozone pretreatment on the anaerobic digestion for the biosludge exposed to trace-level levofloxacin:Degradation,microbial community and ARGs analysis[J]. Journal of Environmental Management,2020,262:110356.
|
68 |
ÖNCÜ N B, MENCELOĞLU Y Z, AKMEHMET BALCıOĞLU I. Comparison of the effectiveness of chlorine,ozone,and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution[J]. Journal of Advanced Oxidation Technologies,2011,14(2):196-203.
|
69 |
MACKUĽAK T, NAGYOVÁ K, FABEROVÁ M,et al. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP[J]. Environmental Toxicology and Pharmacology,2015,40(2):492-497. doi:10.1016/j.etap.2015.07.002
doi: 10.1016/j.etap.2015.07.002
URL
|
70 |
MICHAEL-KORDATOU I, KARAOLIA P, FATTA-KASSINOS D. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater[J]. Water Research,2018,129:208-230. doi:10.1016/j.watres.2017.10.007
doi: 10.1016/j.watres.2017.10.007
URL
|
71 |
WANG Jianlong, XU Lejin. Advanced oxidation processes for wastewater treatment:Formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology,2012,42(3):251-325.
|
72 |
TSAI T M, CHANG H H, CHANG K C,et al. A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria[J]. Journal of Chemical Technology & Biotechnology,2010,85(12):1642-1653. doi:10.1002/jctb.2476
doi: 10.1002/jctb.2476
URL
|
73 |
RAY S K, DHAKAL D, REGMI C,et al. Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2018,350:59-68.
|
74 |
YU Zhigang, RABIEE H, GUO Jianhua. Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes[J]. Water Research,2021,198:117141. doi:10.1016/j.watres.2021.117141
doi: 10.1016/j.watres.2021.117141
URL
|
75 |
STARLING M C V M, de MENDONÇA NETO R P, PIRES G F F,et al. Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes:Achievements and perspectives[J]. The Science of the Total Environment,2021,786:147448. doi:10.1016/j.scitotenv.2021.147448
doi: 10.1016/j.scitotenv.2021.147448
URL
|
76 |
BADAWY M I, WAHAAB R A, EL-KALLINY A S. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater[J]. Journal of Hazardous Materials,2009,167(1/2/3):567-574. doi:10.1016/j.jhazmat.2009.01.023
doi: 10.1016/j.jhazmat.2009.01.023
URL
|
77 |
ARSLAN-ALATON I, KARATAS A, PEHLIVAN Ö,et al. Effect of UV-A-assisted iron-based and UV-C-driven oxidation processes on organic matter and antibiotic resistance removal in tertiary treated urban wastewater[J]. Catalysis Today,2021,361:152-158. doi:10.1016/j.cattod.2020.02.037
doi: 10.1016/j.cattod.2020.02.037
URL
|
78 |
HOU Jie, CHEN Zeyou, GAO Ju,et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed,anoxic-oxic tank,and advanced oxidation technologies[J]. Water Research,2019,159:511-520.
|
79 |
李再兴,剧盼盼,左剑恶,等. 微波强化Fenton氧化法深度处理抗生素废水研究[J]. 工业水处理,2012,32(6):52-55. doi:10.11894/1005-829x.2012.32(6).52
doi: 10.11894/1005-829x.2012.32(6).52
URL
|
|
LI Zaixing, JU Panpan, ZUO Jian’e,et al. Study on the advanced treatment of antibiotic wastewater by microwave-assisted Fenton oxidation[J]. Industrial Water Treatment,2012,32(6):52-55. doi:10.11894/1005-829x.2012.32(6).52
doi: 10.11894/1005-829x.2012.32(6).52
URL
|