1 |
MUSTAFA A, LOUGOU B G, SHUAI Yong,et al. Current technology development for CO2 utilization into solar fuels and chemicals:A review[J]. Journal of Energy Chemistry,2020,49:96-123.
|
2 |
郝晓地,李季,曹达啟. 污水处理碳中和运行需要污泥增量[J]. 中国给水排水,2016,32(12):1-6.
|
|
HAO Xiaodi, LI Ji, CAO Daqi. Carbon-neutral operation of wastewater treatment needing sludge increment[J]. China Water & Wastewater,2016,32(12):1-6.
|
3 |
MUBARAK M, SHAIJA A, SUCHITHRA T V. Flocculation:An effective way to harvest microalgae for biodiesel production[J]. Journal of Environmental Chemical Engineering,2019,7(4):103221.
|
4 |
刁梦洁,柳杰,王晚晴,等. 菌藻共生对污水处理和微藻生物量积累的影响[J]. 环境工程,2018,36(3):8-12.
|
|
DIAO Mengjie, LIU Jie, WANG Wanqing,et al. Impact of algae-bacteria symbiotic system on wastewater treatment and biomass accumulation of microalgae[J]. Environmental Engineering,2018,36(3):8-12.
|
5 |
LEE Jimin, CHO D H, RAMANAN R,et al. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris[J]. Bioresource Technology,2013,131:195-201. doi:10.1016/j.biortech.2012.11.130
doi: 10.1016/j.biortech.2012.11.130
URL
|
6 |
方雨博,王趁义,汤唯唯,等.除藻技术的优缺点比较、应用现状与新技术进展[J]. 工业水处理,2020,40(9):1-6.
URL
|
|
FANG Yubo, WANG Chenyi, TANG Weiwei,et al. Comparison of advantages and disadvantages of algae removaltechnology,application status and new technology progress[J]. Industrial Water Treatment,2020,40(9):1-6.
URL
|
7 |
LIU Lin, HONG Yuling, YE Xin,et al. Biodiesel production from microbial granules in sequencing batch reactor[J]. Bioresource Technology,2018,249:908-915. doi:10.1016/j.biortech.2017.10.105
doi: 10.1016/j.biortech.2017.10.105
URL
|
8 |
RASHID N, PARK W K, SELVARATNAM T. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity,wastewater treatment,and bioflocculation[J]. Chemosphere,2018,194:67-75.
|
9 |
ZHANG Bing, LI Wei, GUO Yuan,et al. Microalgal-bacterial consortia:From inter species interactions to biotechnological applications[J]. Renewable and Sustainable Energy Reviews,2020,118:109563.
|
10 |
SINGH R, KUMAR A, SHARMA Y C. Evaluation of various lipid extraction techniques for microalgae and their effect on biochemical components[J]. Waste and Biomass Valorization,2020,11(6):2603-2612. doi:10.1007/s12649-019-00601-4
doi: 10.1007/s12649-019-00601-4
URL
|
11 |
GARG S, LI Yan, WANG Liguang,et al. Flotation of marine microalgae:Effect of algal hydrophobicity[J]. Bioresource Technology,2012,121:471-474.
|
12 |
PHOOCHINDA W, WHITE D A. Removal of algae using froth flotation[J]. Environmental Technology,2003,24(1):87-96. doi:10.1080/09593330309385539
doi: 10.1080/09593330309385539
URL
|
13 |
LIBER J A, BRYSON A E, BONITO G,et al. Harvesting microalgae for food and energy products[J]. Small Methods,2020,4(10):2000349. doi:10.1002/smtd.202000349
doi: 10.1002/smtd.202000349
URL
|
14 |
PRAGYA N, PANDEY K K, SAHOO P K. A review on harvesting,oil extraction and biofuels production technologies from microalgae[J]. Renewable and Sustainable Energy Reviews,2013,24:159-171.
|
15 |
DEMIR I, BESSON A, GUIRAUD P,et al. Towards a better understanding of microalgae natural flocculation mechanisms to enhance flotation harvesting efficiency[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2020,82(6):1009-1024.
|
16 |
UDUMAN N, QI Ying, DANQUAH M K,et al. Dewatering of microalgal cultures:A major bottleneck to algae-based fuels[J]. Journal of Renewable and Sustainable Energy,2010,2(1):012701.
|
17 |
LAAMANEN C A, ROSS G M, SCOTT J A. Flotation harvesting of microalgae[J]. Renewable and Sustainable Energy Reviews,2016,58:75-86. doi:10.1016/j.rser.2015.12.293
doi: 10.1016/j.rser.2015.12.293
URL
|
18 |
ZOU Xiaotong, LI Yanpeng, XU Kaiwei,et al. Microalgae harvesting by buoy-bead flotation process using Bioflocculant as alternative to chemical Flocculant[J]. Algal Research,2018,32:233-240. doi:10.1016/j.algal.2018.04.010
doi: 10.1016/j.algal.2018.04.010
URL
|
19 |
GULDHE A, MISRA R, SINGH P,et al. An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes[J]. Algal Research,2016,19:292-298. doi:10.1016/j.algal.2015.08.014
doi: 10.1016/j.algal.2015.08.014
URL
|
20 |
VANDAMME D, GHEYSEN L, MUYLAERT K,et al. Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum [J]. Separation and Purification Technology,2018,194:362-367. doi:10.1016/j.seppur.2017.10.035
doi: 10.1016/j.seppur.2017.10.035
URL
|
21 |
BERG M F, BOTHA A M, BIERMAN A,et al. Assessing domestic wastewater effluent with a battery of bioassays after treatment with a specific consortium of microalgae and different flocculation methods[J]. Water,Air,& Soil Pollution,2020,231(6):1-15. doi:10.1007/s11270-020-04627-6
doi: 10.1007/s11270-020-04627-6
URL
|
22 |
赵奎,王亚君,武振晋,等. 8种不同絮凝剂对埃氏小球藻絮凝效应的研究[J]. 山西农业大学学报(自然科学版),2017,37(1):54-59. doi:10.3969/j.issn.1671-8151.2017.01.010
doi: 10.3969/j.issn.1671-8151.2017.01.010
URL
|
|
ZHAO Kui, WANG Yajun, WU Zhenjin,et al. Eight different flocculants study of Chlorella emersonii flocculation effect[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2017,37(1):54-59. doi:10.3969/j.issn.1671-8151.2017.01.010
doi: 10.3969/j.issn.1671-8151.2017.01.010
URL
|
23 |
LOPEZ-EXPOSITO P, CAMPANO C, VAN DE VEN T G M,et al. Microalgae harvesting with the novel flocculant hairy cationic nanocrystalline cellulose[J]. Colloids and Surfaces B:Biointerfaces,2019,178:329-336.
|
24 |
RODERO M D R, MUÑOZ R, LEBRERO R,et al. Harvesting microalgal-bacterial biomass from biogas upgrading process and evaluating the impact of flocculants on their growth during repeated recycling of the spent medium[J]. Algal Research,2020,48:101915. doi:10.1016/j.algal.2020.101915
doi: 10.1016/j.algal.2020.101915
URL
|
25 |
VERFAILLIE A, BLOCKX J, PRAVEENKUMAR R,et al. Harvesting of marine microalgae using cationic cellulose nanocrystals[J]. Carbohydrate Polymers,2020,240:116165. doi:10.1016/j.carbpol.2020.116165
doi: 10.1016/j.carbpol.2020.116165
URL
|
26 |
MUHAMMAD G, ALAM M A, MOFIJUR M,et al. Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass[J]. Renewable and Sustainable Energy Reviews,2021,135:110209. doi:10.1016/j.rser.2020.110209
doi: 10.1016/j.rser.2020.110209
URL
|
27 |
GERDE J A, YAO Linxing,LIO J,et al. Microalgae flocculation:Impact of flocculant type,algae species and cell concentration[J]. Algal Research,2014,3:30-35.
|
28 |
BUKHARI A A. Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater[J]. Bioresource Technology,2008,99(5):914-921. doi:10.1016/j.biortech.2007.03.015
doi: 10.1016/j.biortech.2007.03.015
URL
|
29 |
ALAM M A, WANG Zhongming, YUAN Zhenhong. Generation and harvesting of microalgae biomass for biofuel production[J]. Prospects and Challenges in Algal Biotechnology,2017:89-111. doi:10.1007/978-981-10-1950-0_3
doi: 10.1007/978-981-10-1950-0_3
URL
|
30 |
王昌稳,徐梅,刘彬,等. 污水处理中小球藻的自絮凝特性[J]. 净水技术,2020,39(1):104-108.
|
|
WANG Changwen, XU Mei, LIU Bin,et al. Characteristics of chlorella vulgaris auto-flocculation in wastewater treatment[J]. Water Purification Technology,2020,39(1):104-108.
|
31 |
NGUYEN T D P, TRAN T N T, LE T V A,et al. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge:Influence of culture conditions on microalgae growth and nutrient removal[J]. Journal of Bioscience and Bioengineering,2019,127(4):492-498.
|
32 |
NISHANTH S, BHARTI A, GUPTA H,et al. Cyanobacterial extracellular polymeric substances (EPS):Biosynthesis and their potential applications[M]//Microbial and Natural Macromolecules. Amsterdam:Elsevier,2021:349-369.
|
33 |
CHOI O K, HENDREN Z, KIM G D,et al. Influence of activated sludge derived-extracellular polymeric substance (ASD-EPS) as bio-flocculation of microalgae for biofuel recovery[J]. Algal Research,2020,45:101736. doi:10.1016/j.algal.2019.101736
doi: 10.1016/j.algal.2019.101736
URL
|
34 |
WANG Meng, KUO-DAHAB W C, DOLAN S,et al. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae,Chlorella sp. and Micractinium sp. ,in wastewater treatment[J]. Bioresource Technology,2014,154:131-137.
|
35 |
WAN Chun, ZHAO Xinqing, GUO Suolian,et al. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation[J]. Bioresource Technology,2013,135:207-212. doi:10.1016/j.biortech.2012.10.004
doi: 10.1016/j.biortech.2012.10.004
URL
|
36 |
CHENG Pengfei, CHEN Dongjie, LIU Wei,et al. Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal[J]. Science of the Total Environment,2020,725:138263. doi:10.1016/j.scitotenv.2020.138263
doi: 10.1016/j.scitotenv.2020.138263
URL
|
37 |
SALIM S, VERMUË M H, WIJFFELS R H. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation[J]. Bioresource Technology,2012,118:49-55. doi:10.1016/j.biortech.2012.05.007
doi: 10.1016/j.biortech.2012.05.007
URL
|
38 |
GUO Suolian, ZHAO Xinqing, WAN Chun,et al. Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest[J]. Bioresource Technology,2013,145:285-289. doi:10.1016/j.biortech.2013.01.120
doi: 10.1016/j.biortech.2013.01.120
URL
|
39 |
SALIM S, BOSMA R, VERMUË M H,et al. Harvesting of microalgae by bio-flocculation[J]. Journal of Applied Phycology,2011,23(5):849-855. doi:10.1007/s10811-010-9591-x
doi: 10.1007/s10811-010-9591-x
URL
|
40 |
ALAM M A, WAN Chun, GUO Suolian,et al. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7[J]. Journal of Bioscience and Bioengineering,2014,118(1):29-33. doi:10.1016/j.jbiosc.2013.12.021
doi: 10.1016/j.jbiosc.2013.12.021
URL
|
41 |
LEE C S, CHONG M F, ROBINSON J,et al. A review on development and application of plant-based bioflocculants and grafted bioflocculants[J]. Industrial & Engineering Chemistry Research,2014,53(48):18357-18369. doi:10.1021/ie5034045
doi: 10.1021/ie5034045
URL
|
42 |
王荣昌,程霞,曾旭. 污水处理中菌藻共生系统去除污染物机理及其应用进展[J]. 环境科学学报,2018,38(1):13-22.
|
|
WANG Rongchang, CHENG Xia, ZENG Xu. Mechanisms and applications of bacterial-algal symbiotic systems for pollutant removal from wastewater[J]. Acta Scientiae Circumstantiae,2018,38(1):13-22.
|
43 |
巫小丹,阮榕生,王辉,等. 菌藻共生系统处理废水研究现状及发展前景[J]. 环境工程,2014,32(3):34-37. doi:10.13205/j.hjgc.201403009
doi: 10.13205/j.hjgc.201403009
URL
|
|
WU Xiaodan, RUAN Rongsheng, WANG Hui,et al. Current status and prospect of sewage purification with the algal-microbe symbiotic system[J]. Environmental Engineering,2014,32(3):34-37. doi:10.13205/j.hjgc.201403009
doi: 10.13205/j.hjgc.201403009
URL
|
44 |
RAY A, BANERJEE S,DAS D. Microalgal bio-flocculation:Present scenario and prospects for commercialization[J]. Environmental Science and Pollution Research International,2021,28(21):26294-26312.
|
45 |
MANHEIM D, NELSON Y. Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production[J]. Environmental Progress & Sustainable Energy,2013,32(4):946-954. doi:10.1002/ep.11861
doi: 10.1002/ep.11861
URL
|
46 |
PASSOW U, SHIPE R F, MURRAY A,et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research,2001,21(4):327-346. doi:10.1016/s0278-4343(00)00101-1
doi: 10.1016/s0278-4343(00)00101-1
URL
|
47 |
GÄRDES A, IVERSEN M H, GROSSART H P,et al. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii [J]. The ISME Journal,2011,5(3):436-445. doi:10.1038/ismej.2010.145
doi: 10.1038/ismej.2010.145
URL
|
48 |
BERMAN T, PARPAROVA R. Visualization of transparent exopolymer particles (TEP) in various source waters[J]. Desalination and Water Treatment,2010,21(1/2/3):382-389. doi:10.5004/dwt.2010.1860
doi: 10.5004/dwt.2010.1860
URL
|
49 |
ZHANG Bing, LENS P N L, SHI Wenxin,et al. The attachment potential and N-acyl-homoserine lactone-based quorum sensing in aerobic granular sludge and algal-bacterial granular sludge[J]. Applied Microbiology and Biotechnology,2018,102(12):5343-5353. doi:10.1007/s00253-018-9002-9
doi: 10.1007/s00253-018-9002-9
URL
|
50 |
ZHOU Dandan, ZHANG Chaofan, FU Liang,et al. Responses of the microalga chlorophyta sp. to bacterial quorum sensing molecules (N-acylhomoserine lactones):Aromatic protein-induced self-aggregation[J]. Environmental Science & Technology,2017,51(6):3490-3498.
|
51 |
LEE C S, LEE S A, KO S R,et al. Effects of photoperiod on nutrient removal,biomass production,and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater[J]. Water Research,2015,68:680-691.
|
52 |
LIU Lin, FAN Hongyong, LIU Yuhong,et al. Development of algae-bacteria granular consortia in photo-sequencing batch reactor[J]. Bioresource Technology,2017,232:64-71. doi:10.1016/j.biortech.2017.02.025
doi: 10.1016/j.biortech.2017.02.025
URL
|
53 |
LARDON L, HÉLIAS A, SIALVE B,et al. Life-cycle assessment of biodiesel production from microalgae[J]. Environmental Science & Technology,2009,43(17):6475-6481. doi:10.1021/es900705j
doi: 10.1021/es900705j
URL
|
54 |
WANG Xin, LI Zhijiang, SU Jianqiang,et al. Lysis of a red-tide causing alga,Alexandrium tamarense,caused by bacteria from its phycosphere[J]. Biological Control,2010,52(2):123-130.
|
55 |
WREDE D, TAHA M, MIRANDA A F,et al. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells,lipid production and wastewater treatment[J]. PLoS One,2014,9(11):e113497.
|
56 |
ZHANG Jianguo, HU Bo. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets[J]. Bioresource Technology,2012,114:529-535. doi:10.1016/j.biortech.2012.03.054
doi: 10.1016/j.biortech.2012.03.054
URL
|
57 |
WANG Hui, H D 4th LAUGHINGHOUSE, ANDERSON M A,et al. Novel bacterial isolate from Permian groundwater,capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1[J]. Applied and Environmental Microbiology,2012,78(5):1445-1453. doi:10.1128/AEM.06474-11
doi: 10.1128/AEM.06474-11
URL
|
58 |
ZHOU Wenguang, MIN Min, HU Bing,et al. Filamentous fungi assisted bio-flocculation:A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells[J]. Separation and Purification Technology,2013,107:158-165. doi:10.1016/j.seppur.2013.01.030
doi: 10.1016/j.seppur.2013.01.030
URL
|
59 |
FUJITA M, IWAHORI K, YAMAKAWA K. Pellet formation of fungi and its application to starch wastewater treatment[J]. Water Science and Technology,1993,28(2):267-274. doi:10.2166/wst.1993.0118
doi: 10.2166/wst.1993.0118
URL
|
60 |
JIANG Jiao, JIN Wenbiao, TU Renjie,et al. Harvesting of microalgae chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi[J]. Waste and Biomass Valorization,2021,12(1):145-154. doi:10.1007/s12649-020-00979-6
doi: 10.1007/s12649-020-00979-6
URL
|
61 |
GULTOM S, HU Bo. Review of microalgae harvesting via co-pelletization with filamentous fungus[J]. Energies,2013,6(11):5921-5939. doi:10.3390/en6115921
doi: 10.3390/en6115921
URL
|