1 |
REN Liping, ZHOU Wei, SUN Bojing,et al. Defects-engineering of magnetic γ-Fe 2O 3 ultrathin nanosheets/mesoporous black TiO 2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation[J]. Applied Catalysis B:Environmental, 2019, 240:319-328. doi: 10.1016/j.apcatb.2018.08.033
|
2 |
WU Xiaolu, FU Min, LU Peng,et al. Unique electronic structure of Mg/O co-decorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation[J]. Chinese Journal of Catalysis, 2019, 40(5):776-785. doi: 10.1016/s1872-2067(19)63300-0
|
3 |
XU Longyao, ZHANG He, XIONG Ping,et al. Occurrence,fate,and risk assessment of typical tetracycline antibiotics in the aquatic environment:A review[J]. Science of the Total Environment, 2021, 753:141975. doi: 10.1016/j.scitotenv.2020.141975
|
4 |
WANG Qi, ZHANG Wenming, HU Xiaoru,et al. Hollow spherical WO 3/TiO 2 heterojunction for enhancing photocatalytic performance in visible-light[J]. Journal of Water Process Engineering, 2021, 40:101943. doi: 10.1016/j.jwpe.2021.101943
|
5 |
牛凯莉,孙冰,刘宇,等. 钨酸铋光催化剂在盐酸四环素废水处理中的应用研究进展[J]. 工业水处理,2021,41(11):9-15.
|
|
NIU Kaili, SUN Bing, LIU Yu,et al. Research progress of bismuth tungstate photocatalyst application in tetracycline wastewater treatment[J]. Industrial Water Treatment,2021,41(11):9-15.
|
6 |
ZAMBRANO J, GARCÍA-ENCINA P A, JIMÉNEZ J J,et al. Photolytic and photocatalytic removal of a mixture of four veterinary antibiotics[J]. Journal of Water Process Engineering, 2022, 48:102841. doi: 10.1016/j.jwpe.2022.102841
|
7 |
CHEN Fang, MA Tianyi, ZHANG Tierui,et al. Atomic-level charge separation strategies in semiconductor-based photocatalysts[J]. Advanced Materials(Deerfield Beach,Fla.), 2021, 33(10):e2005256. doi: 10.1002/adma.202005256
|
8 |
WANG Chuya, ZHANG Xing, QIU Haibin,et al. Bi 24O 31Br 10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride[J]. Applied Catalysis B:Environmental, 2017, 205:615-623. doi: 10.1016/j.apcatb.2017.01.015
|
9 |
SONG Chuanfu, CHEN Kunyuan, CHEN Mingxin,et al. Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H 3PO 4-modified TiO 2 nanoparticles anchored on biochar[J]. Journal of Water Process Engineering, 2022, 45:102467. doi: 10.1016/j.jwpe.2021.102467
|
10 |
|
|
KUANG Yi, LI Jun, JIN Yang,et al. Synthesis of nano-sized zinc oxide in liquid phase and its photocatalytic properties[J]. Inorganic Chemicals Industry, 2019, 51(9):40-44. doi: 10.11962/1006-4990.2018-0597
|
11 |
MOHAMED R M, MCKINNEY D, KADI M W,et al. Cobalt/zinc oxide hollow spheres:Visible light nanophotocatalysts[J]. Ceramics International, 2016, 42(2):2299-2305. doi: 10.1016/j.ceramint.2015.10.024
|
12 |
GHODERAO K P, JAMBLE S N, KALE R B. Hydrothermally synthesized Cd-doped ZnO nanostructures with efficient sunlight-driven photocatalytic and antibacterial activity[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(12):11208-11219. doi: 10.1007/s10854-019-01466-y
|
13 |
LOU Tingfei, SONG Shizhu, GAO Xiaohong,et al. Sub-20 nm anatase TiO 2 anchored on hollow carbon spheres for enhanced photocatalytic degradation of reactive red 195[J]. Journal of Colloid and Interface Science, 2022, 617:663-672. doi: 10.1016/j.jcis.2022.03.049
|
14 |
|
|
DU Hongyan, WEI Zhipeng, SUN Lijuan,et al. Luminescent properties of ZnS∶Mn nanoparticles dependent on doping concentration[J]. Chinese Optics, 2013, 6(1):111-116. doi: 10.3788/co.20130601.0111
|
15 |
LI Heping, LIU Jianxing, WANG Chao,et al. Oxygen vacancies-enriched and porous hierarchical structures of ZnO microspheres with improved photocatalytic performance[J]. Vacuum, 2022, 199:110891. doi: 10.1016/j.vacuum.2022.110891
|
16 |
GAO Xueyou, YANG Jingren, ZENG Deqian,et al. Two-dimensional nickel nanosheets coupled with Zn 0.5Cd 0.5S nanocrystals for highly improved visible-light photocatalytic H 2 production[J]. Journal of Alloys and Compounds, 2021, 871:159460-159468. doi: 10.1016/j.jallcom.2021.159460
|
17 |
吉列凤,王丹军,郭莉,等. 钆、镉共掺纳米TiO2光催化剂的合成及其光催化性能研究[J]. 延安大学学报(自然科学版),2010,29(2):71-75.
|
|
JI Liefeng, WANG Danjun, GUO Li,et al. Synthesis of Gd-Cd co-doped nano TiO2 photocatalyst and its photocatalytic activity[J]. Journal of Yanan University(Natural Science Edition),2010,29(2):71-75.
|
18 |
LIANG Qinghua, LIU Xiaojuan, SHAO Binbin,et al. Construction of fish-scale tubular carbon nitride-based heterojunction with boosting charge separation in photocatalytic tetracycline degradation and H 2O 2 production[J]. Chemical Engineering Journal, 2021, 426:130831. doi: 10.1016/j.cej.2021.130831
|
19 |
迟聪聪,屈盼盼,任超男,等. SiO 2@Ag@SiO 2@TiO 2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7):750-756. doi: 10.15541/jim20210685
|
|
CHI Congcong, QU Panpan, REN Chaonan,et al. Preparation of SiO 2@Ag@SiO 2@TiO 2 core-shell structure and its photocatalytic degradation property[J]. Journal of Inorganic Materials, 2022, 37(7):750-756. doi: 10.15541/jim20210685
|
20 |
MURILLO-SIERRA J C, HERNÁNDEZ-RAMÍREZ A, ZHAO Zongyan,et al. Construction of direct Z-scheme WO 3/ZnS heterojunction to enhance the photocatalytic degradation of tetracycline antibiotic[J]. Journal of Environmental Chemical Engineering, 2021, 9(2):105111. doi: 10.1016/j.jece.2021.105111
|
21 |
|
|
HAO Yingdong, LIU Shuang, SUN Nannan,et al. Photocatalytic oxidation of CH 4 to oxygenates on Fe(Ⅲ)O x /ZnO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9):1160-1166. doi: 10.1016/s1872-5813(22)60016-1
|
22 |
LI Zhonghua, PAN Xiaoyang, YI Zhiguo. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts[J]. Journal of Materials Chemistry A, 2019, 7(2):469-475. doi: 10.1039/c8ta09592b
|
23 |
JIAO Shaojun, ZHENG Shourong, YIN Daqiang,et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008, 73(3):377-382. doi: 10.1016/j.chemosphere.2008.05.042
|
24 |
|
|
WANG Lijuan, WANG Hanzheng, CAI Jun,et al. Preparation of flower cluster nano zinc oxide and photocatalytic degradation of methylene blue[J]. Industrial Water Treatment, 2021, 41(5):92-98. doi: 10.11894/iwt.2020-0706
|