1 |
ZHANG Li, PENG Yongzhen, YANG Jiachun. Transformation of dissolved organic matter during advanced coal liquefaction wastewater treatment and analysis of its molecular characteristics[J]. Science of the Total Environment, 2019, 658:1334-1343. doi: 10.1016/j.scitotenv.2018.12.218
|
2 |
MAIZEL A C, REMUCAL C K. The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter[J]. Water Research, 2017, 122:42-52. doi: 10.1016/j.watres.2017.05.055
|
3 |
MICHAEL-KORDATOU I, MICHAEL C, DUAN X,et al. Dissolved effluent organic matter:Characteristics and potential implications in wastewater treatment and reuse applications[J]. Water Research, 2015, 77:213-248. doi: 10.1016/j.watres.2015.03.011
|
4 |
GENG Chunxiang, CAO Na, XU Wei,et al. Molecular characterization of organics removed by a covalently bound inorganic-organic hybrid coagulant for advanced treatment of municipal sewage[J]. Environmental Science & Technology, 2018, 52(21):12642-12648. doi: 10.1021/acs.est.8b03306
|
5 |
KNOPP G, PRASSE C, TERNES T A,et al. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters[J]. Water Research, 2016, 100:580-592. doi: 10.1016/j.watres.2016.04.069
|
6 |
HUBER M M, GÖBEL A, JOSS A,et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents:A pilot study[J]. Environmental Science & Technology, 2005, 39(11):4290-4299. doi: 10.1021/es048396s
|
7 |
PETER A, VON GUNTEN U. Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water[J]. Environmental Science & Technology, 2007, 41(2):626-631. doi: 10.1021/es061687b
|
8 |
TEKLE-RÖTTERING A, REISZ E, JEWELL K S,et al. Ozonation of pyridine and other N-heterocyclic aromatic compounds:Kinetics,stoichiometry,identification of products and elucidation of pathways[J]. Water Research, 2016, 102:582-593. doi: 10.1016/j.watres.2016.06.021
|
9 |
WILLACH S, LUTZE H V, ECKEY K,et al. Degradation of sulfamethoxazole using ozone and chlorine dioxide:Compound-specific stable isotope analysis,transformation product analysis and mechanistic aspects[J]. Water Research, 2017, 122:280-289. doi: 10.1016/j.watres.2017.06.001
|
10 |
TEKLE-RÖTTERING A, JEWELL K S, REISZ E,et al. Ozonation of piperidine,piperazine and morpholine:Kinetics,stoichiometry,product formation and mechanistic considerations[J]. Water Research, 2016, 88:960-971. doi: 10.1016/j.watres.2016.06.021
|
11 |
STAEHELIN J, HOIGNE J. Decomposition of ozone in water:Rate of initiation by hydroxide ions and hydrogen peroxide[J]. Environmental Science and Technology, 1982, 16(10):676-681. doi: 10.1021/es00104a009
|
12 |
VON GUNTEN U. Ozonation of drinking water:Part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37(7):1443-1467. doi: 10.1016/s0043-1354(02)00457-8
|
13 |
JIN Pengkang, JIN Xin, BJERKELUND V A,et al. A study on the reactivity characteristics of dissolved effluent organic matter(EfOM) from municipal wastewater treatment plant during ozonation[J]. Water Research, 2016, 88:643-652. doi: 10.1016/j.watres.2015.10.060
|
14 |
CHEN Zhiqiang, LI Mo, WEN Qinxue,et al. Evolution of molecular weight and fluorescence of effluent organic matter(EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools[J]. Water Research, 2017, 124:566-575. doi: 10.1016/j.watres.2017.08.006
|
15 |
PHUNGSAI P, KURISU F, KASUGA I,et al. Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes[J]. Environmental Science & Technology, 2018, 52(6):3392-3401. doi: 10.1021/acs.est.7b04765
|
16 |
PHUNGSAI P, KURISU F, KASUGA I,et al. Molecular characteristics of dissolved organic matter transformed by O 3 and O 3/H 2O 2 treatments and the effects on formation of unknown disinfection by-products[J]. Water Research, 2019, 159:214-222. doi: 10.1016/j.watres.2019.05.002
|
17 |
PHUNGSAI P, KURISU F, KASUGA I,et al. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry[J]. Water Research, 2016, 100:526-536. doi: 10.1016/j.watres.2016.05.047
|
18 |
THESE A, REEMTSMA T. Structure-dependent reactivity of low molecular weight fulvic acid molecules during ozonation[J]. Environmental Science & Technology, 2005, 39(21):8382-8387. doi: 10.1021/es050941h
|
19 |
SCHOLLÉE J E, BOURGIN M, VON GUNTEN U,et al. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments[J]. Water Research, 2018, 142:267-278. doi: 10.1016/j.watres.2018.05.045
|
20 |
郝智能. 水中溶解性有机质非生物卤化的傅里叶变换离子回旋共振质谱分析研究[D]. 北京:中国科学院大学,2017.
|
|
HAO Zhineng. Study on abiotic halogenation of dissolved organic matter in water by Fourier transform ion cyclotron resonance mass spectrometry[D]. Beijing:University of Chinese Academy of Sciences,2017.
|
21 |
GURTLER B K, VETTER T A, PERDUE E M,et al. Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater[J]. Journal of Membrane Science, 2008, 323(2):328-336. doi: 10.1016/j.memsci.2008.06.025
|
22 |
LAVONEN E E, GONSIOR M, TRANVIK L J,et al. Selective chlorination of natural organic matter:Identification of previously unknown disinfection byproducts[J]. Environmental Science & Technology, 2013, 47(5):2264-2271. doi: 10.1021/es304669p
|
23 |
ZHANG Bingliang, SHAN Chao, HAO Zhineng,et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater:Molecular composition correlated with spectral indexes and acute toxicity[J]. Water Research, 2019, 157:472-482. doi: 10.1016/j.watres.2019.04.002
|
24 |
王雪凝,张炳亮,潘丙才. 市政污水二级出水中溶解性有机质在紫外/氯处理过程中的转化特性[J]. 环境科学,2021,42(8):3847-3857.
|
|
WANG Xuening, ZHANG Bingliang, PAN Bingcai. Transformation characteristics of dissolved organic matter during UV/chlorine treatment of municipal secondary effluent[J]. Environmental Science,2021,42(8):3847-3857.
|
25 |
TSENG L Y, GONSIOR M, SCHMITT-KOPPLIN P,et al. Molecular characteristics and differences of effluent organic matter from parallel activated sludge and integrated fixed-film activated sludge(IFAS) processes[J]. Environmental Science & Technology, 2013:130827102639005. doi: 10.1021/es4002482
|
26 |
KUJAWINSKI E B, LONGNECKER K, BLOUGH N V,et al. Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2009, 73(15):4384-4399. doi: 10.1016/j.gca.2009.04.033
|
27 |
HAO Zhineng, SHI Fengqiong, CAO Dong,et al. Freezing-induced bromate reduction by dissolved organic matter and the formation of organobromine compounds[J]. Environmental Science & Technology, 2020, 54(3):1668-1676. doi: 10.1021/acs.est.9b07902
|
28 |
BADER T, SCHULZ W, KÜMMERER K,et al. LC-HRMS data processing strategy for reliable sample comparison exemplified by the assessment of water treatment processes[J]. Analytical Chemistry, 2017, 89(24):13219-13226. doi: 10.1021/acs.analchem.7b03037
|
29 |
BROOKER M R, LONGNECKER K, KUJAWINSKI E B,et al. Discrete organic phosphorus signatures are evident in pollutant sources within a Lake Erie tributary[J]. Environmental Science & Technology, 2018, 52(12):6771-6779. doi: 10.1021/acs.est.7b05703
|
30 |
ABELLÁN M N, GEBHARDT W, SCHRÖDER H F. Detection and identification of degradation products of sulfamethoxazole by means of LC/MS and -MSn after ozone treatment[J]. Water Science and Technology, 2008, 58(9):1803-1812. doi: 10.2166/wst.2008.539
|
31 |
BOROWSKA E, BOURGIN M, HOLLENDER J,et al. Oxidation of cetirizine,fexofenadine and hydrochlorothiazide during ozonation:Kinetics and formation of transformation products[J]. Water Research, 2016, 94:350-362. doi: 10.1016/j.watres.2016.02.020
|
32 |
COELHO A D, SANS C, AGÜERA A,et al. Effects of ozone pre-treatment on diclofenac:Intermediates,biodegradability and toxicity assessment[J]. Science of the Total Environment, 2009, 407(11):3572-3578. doi: 10.1016/j.scitotenv.2009.01.013
|
33 |
ZIMMERMANN S G, SCHMUKAT A, SCHULZ M,et al. Kinetic and mechanistic investigations of the oxidation of tramadol by ferrate and ozone[J]. Environmental Science & Technology, 2012, 46(2):876-884. doi: 10.1021/es203348q
|
34 |
ACERO J L, STEMMLER K, VON GUNTEN U. Degradation kinetics of atrazine and its degradation products with ozone and OH radicals:A predictive tool for drinking water treatment[J]. Environmental Science and Technology, 2000, 34(4):591-597. doi: 10.1021/es990724e
|
35 |
TAY K S, RAHMAN N A, ABAS M R BIN. Ozonation of parabens in aqueous solution:Kinetics and mechanism of degradation[J]. Chemosphere, 2010, 81(11):1446-1453. doi: 10.1016/j.chemosphere.2010.09.004
|
36 |
MAWHINNEY D B, VANDERFORD B J, SNYDER S A. Transformation of 1H-benzotriazole by ozone in aqueous solution[J]. Environmental Science & Technology, 2012, 46(13):7102-7111. doi: 10.1021/es300338e
|
37 |
MEREL S, LEGE S, YANEZ HERAS J E,et al. Assessment of N-oxide formation during wastewater ozonation[J]. Environmental Science & Technology, 2017, 51(1):410-417. doi: 10.1021/acs.est.6b02373
|
38 |
DODD M C, RENTSCH D, SINGER H P,et al. Transformation of β-lactam antibacterial agents during aqueous ozonation:Reaction pathways and quantitative bioassay of biologically-active oxidation products[J]. Environmental Science & Technology, 2010, 44(15):5940-5948. doi: 10.1021/es101061w
|