| [1] |
王丛林,柴晓明,杨博,等. 先进核能技术发展及展望[J]. 核动力工程,2023,44(5):1-5.
|
|
WANG Conglin, CHAI Xiaoming, YANG Bo,et al. Development and prospect of advanced nuclear energy technology[J]. Nuclear Power Engineering,2023,44(5):1-5.
|
| [2] |
MANOS M J, KANATZIDIS M G. Metal sulfide ion exchangers:Superior sorbents for the capture of toxic and nuclear waste-related metal ions[J]. Chemical Science, 2016, 7(8):4804-4824. doi: 10.1039/c6sc01039c
|
| [3] |
TANG Junhao, SUN Haiyan, MA Wen,et al. Recent progress in developing crystalline ion exchange materials for the removal of radioactive ions[J]. Chinese Journal of Structural Chemistry,2020,39(12):2157-2171.
|
| [4] |
WANG Yunxia, LI Jianrong, YANG J C E,et al. Granulous KMS-1/PAN composite for Cs + removal[J]. RSC Advances, 2015, 5(111):91431-91435. doi: 10.1039/c5ra16205j
|
| [5] |
LI Jilong, JIN Jiance, ZOU Yanmin,et al. Efficient removal of Cs + and Sr 2+ ions by granulous(Me 2NH 2) 4/3(Me 3NH) 2/3Sn 3S 7·1.25H 2O/polyacrylonitrile composite[J]. ACS Applied Materials & Interfaces, 2021, 13(11):13434-13442. doi: 10.1021/acsami.1c01983
|
| [6] |
LIU Qi, WEI Dingbo, QI Chenyu,et al. Highly selective and easily regenerated novel PVDF/KCTS porous beads for the sustainable removal of cesium from wastewater[J]. Journal of Cleaner Production, 2023, 391:136212. doi: 10.1016/j.jclepro.2023.136212
|
| [7] |
LIU Can, LI Yujie, LIU Qi,et al. Highly selective and easily regenerated porous fibrous composite of PSF-Na 2.1Ni 0.05Sn 2.95S 7 for the sustainable removal of cesium from wastewater[J]. Journal of Hazardous Materials, 2022, 436:129188. doi: 10.1016/j.jhazmat.2022.129188
|
| [8] |
EOM H H, KIM Y, HARBOTTLE D,et al. Immobilization of KTS-3 on an electrospun fiber membrane for efficient removal of Cs + and Sr 2+ [J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105991. doi: 10.1016/j.jece.2021.105991
|
| [9] |
WANG Yunxia, GUPTA K, LI Jianrong,et al. Novel chalcogenide based magnetic adsorbent KMS-1/L-Cystein/Fe 3O 4 for the facile removal of ciprofloxacin from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 538:378-386. doi: 10.1016/j.colsurfa.2017.11.016
|
| [10] |
SARMA D, MALLIAKAS C D, SUBRAHMANYAM K S,et al. K 2 x Sn 4- x S 8- x ( x=0.65-1):A new metal sulfide for rapid and selective removal of Cs +,Sr 2+ and UO 2 2+ ions[J]. Chemical Science, 2016, 7(2):1121-1132. doi: 10.1039/c5sc03040d
|
| [11] |
MANOS M J, KANATZIDIS M G. Highly efficient and rapid Cs + uptake by the layered metal sulfide K 2 x Mn x Sn 3- x S 6(KMS-1)[J]. Journal of the American Chemical Society, 2009, 131(18):6599-6607. doi: 10.1021/ja900977p
|
| [12] |
ZHANG Mingdong, GU Ping, YAN Su,et al. A novel nanomaterial and its new application for efficient radioactive strontium removal from tap water:KZTS-NS metal sulfide adsorbent versus CTA-F-MF process[J]. Chemical Engineering Journal, 2020, 391:123486. doi: 10.1016/j.cej.2019.123486
|
| [13] |
ZHANG Mingdong, GU Ping, YAN Su,et al. Effective removal of radioactive cobalt from aqueous solution by a layered metal sulfide adsorbent:Mechanism,adsorption performance,and practical application[J]. Separation and Purification Technology, 2021, 256:117775. doi: 10.1016/j.seppur.2020.117775
|
| [14] |
XU Yao, GU Ping, ZHANG Guanghui,et al. Investigation of coagulation as a pretreatment for microfiltration in cesium removal by copper ferrocyanide adsorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 313(2):435-444. doi: 10.1007/s10967-017-5337-4
|
| [15] |
范瑾初,金兆丰. 水质工程[M]. 北京:中国建筑工业出版社,2009:32-34.
|
| [16] |
KAMBLE S, AGRAWAL S, CHERUMUKKIL S,et al. Revisiting zeta potential,the key feature of interfacial phenomena,with applications and recent advancements[J]. ChemistrySelect, 2022, 7(1):e202103084. doi: 10.1002/slct.202103084
|
| [17] |
|
| [18] |
SHAIKH S M R, NASSER M S, HUSSEIN I,et al. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals:A comprehensive review[J]. Separation and Purification Technology, 2017, 187:137-161. doi: 10.1016/j.seppur.2017.06.050
|
| [19] |
WANG Xi, XU Hui, WANG Dongsheng. Mechanism of fluoride removal by AlCl 3 and Al 13:The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020, 398:122987. doi: 10.1016/j.jhazmat.2020.122987
|
| [20] |
ZHAO Y X, GAO B Y, QI Q B,et al. Cationic polyacrylamide as coagulant aid with titanium tetrachloride for low molecule organic matter removal[J]. Journal of Hazardous Materials, 2013, 258:84-92. doi: 10.1016/j.jhazmat.2013.04.044
|
| [21] |
ZHU Cheng, ZHANG Panyue, WANG Hongjie,et al. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability[J]. Ultrasonics Sonochemistry, 2018, 40:353-360. doi: 10.1016/j.ultsonch.2017.07.028
|
| [22] |
FIJAŁKOWSKA G, WIŚNIEWSKA M, SZEWCZUK⁃KARPISZ K,et al. Comparison of lead(Ⅱ) ions accumulation and bioavailability on the montmorillonite and kaolinite surfaces in the presence of polyacrylamide soil flocculant[J]. Chemosphere, 2021, 276:130088. doi: 10.1016/j.chemosphere.2021.130088
|
| [23] |
NIGHTINGALE E R Jr. Phenomenological theory of ion solvation. effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9):1381-1387. doi: 10.1021/j150579a011
|
| [24] |
QI Hui, LIU Huitao, GAO Yuan. Removal of Sr(Ⅱ) from aqueous solutions using polyacrylamide modified graphene oxide composites[J]. Journal of Molecular Liquids, 2015, 208:394-401. doi: 10.1016/j.molliq.2015.04.061
|
| [25] |
洪奇圣,穆景利,张艳,等. K/Zn/Sn/S金属硫化物对水中铯离子的吸附去除性能及机理[J]. 环境工程学报,2024,18(1):1-12.
|
|
HONG Qisheng, MU Jingli, ZHANG Yan,et al. Adsorptive removal performance and mechanism of cesium ion from aqueous solutions by a K/Zn/Sn/S metal sulfide[J]. Chinese Journal of Environmental Engineering,2024,18(1):1-12.
|
| [26] |
HO Y S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials, 2006, 136(3):681-689. doi: 10.1016/j.jhazmat.2005.12.043
|
| [27] |
TANG Junhao, JIN Jiance, LI Weian,et al. Highly selective cesium(Ⅰ) capture under acidic conditions by a layered sulfide[J]. Nature Communications, 2022, 13(1):658. doi: 10.1038/s41467-022-28217-8
|
| [28] |
WU Yan, ZHANG Xiaoxia, WEI Yuezhou,et al. Development of adsorption and solidification process for decontamination of Cs⁃contaminated radioactive water in Fukushima through silica-based AMP hybrid adsorbent[J]. Separation and Purification Technology, 2017, 181:76-84. doi: 10.1016/j.seppur.2017.03.019
|
| [29] |
SEO Y, HWANG Y. Prussian blue immobilized on covalent organic polymer-grafted granular activated carbon for cesium adsorption from water[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105950. doi: 10.1016/j.jece.2021.105950
|
| [30] |
GUPTA K, YUAN Baoling, CHEN Chen,et al. K 2 x Mn x Sn 3- x S 6( x=0.5-0.95)(KMS-1) immobilized on the reduced graphene oxide as KMS-1/r-GO aerogel to effectively remove Cs + and Sr 2+ from aqueous solution[J]. Chemical Engineering Journal, 2019, 369:803-812. doi: 10.1016/j.cej.2019.03.109
|
| [31] |
SHUBAIR T, ELJAMAL O, TAHARA A,et al. Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters[J]. Journal of Molecular Liquids, 2019, 288:111026. doi: 10.1016/j.molliq.2019.111026
|
| [32] |
LIM Y, LEE D S. Effective radioactive strontium removal using lithium titanate decorated Ti 3C 2T x MXene/polyacrylonitrile beads[J]. Journal of Hazardous Materials, 2024, 475:134919. doi: 10.1016/j.jhazmat.2024.134919
|
| [33] |
SHAH C P, SINGH K, DUSANE C,et al. Study of extraction of Co(Ⅱ) ions using the synthesized polyacrylonitrile-manganese dioxide composite beads[J]. Separation Science and Technology, 2012, 47(8):1177-1184. doi: 10.1080/01496395.2011.644617
|
| [34] |
XING Min, WANG Jianlong. Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(Ⅱ) removal from aqueous solution[J]. Journal of Colloid and Interface Science, 2016, 474:119-128. doi: 10.1016/j.jcis.2016.04.031
|
| [35] |
SHAFIEE M, FOROUTAN R, FOULADI K,et al. Application of oak powder/Fe 3O 4 magnetic composite in toxic metals removal from aqueous solutions[J]. Advanced Powder Technology, 2019, 30(3):544-554. doi: 10.1016/j.apt.2018.12.006
|
| [36] |
LIM Y, KIM B, JANG J,et al. Buckwheat hull-derived biochar immobilized in alginate beads for the adsorptive removal of cobalt from aqueous solutions[J]. Journal of Hazardous Materials, 2022, 436:129245. doi: 10.1016/j.jhazmat.2022.129245
|
| [37] |
YUAN Guoyuan, LI Yanqiu, YU Yuying,et al. Facile construction of a core-shell structured metal-organic frameworks nanofiber membrane for removing Co(Ⅱ) from simulated radioactive wastewater[J]. Separation and Purification Technology, 2024, 336:126295. doi: 10.1016/j.seppur.2024.126295
|