| [1] |
BISWAS B, BALLA P, KRISHNA B B,et al. Physiochemical characteristics of bio-char derived from pyrolysis of rice straw under different temperatures[J]. Biomass Conversion and Biorefinery, 2024, 14(12):12775-12783. doi: 10.1007/s13399-022-03261-y
|
| [2] |
陈文超,李勇超,杨昕旻,等.多行业污泥生物炭特性及深度处理工业废水行为研究[J]. 工业水处理,2024,44(8):70-80.
|
|
CHEN Wenchao, LI Yongchao, YANG Xinmin,et al. Characteristics of multi-industry sludge biochar and behavior of advanced treatment of industrial wastewater[J]. Industrial Water Treatment,2024,44(8):70-80.
|
| [3] |
TAG A T, DUMAN G, UCAR S,et al. Effects of feedstock type and pyrolysis temperature on potential applications of biochar[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120:200-206. doi: 10.1016/j.jaap.2016.05.006
|
| [4] |
KAUR R, KUMAR V T, KRISHNA B B,et al. Comprehensive pyrolysis investigation of Lemongrass and Tagetes minuta residual biomass:Bio-oil composition and biochar physicochemical properties[J]. Biomass Conversion and Biorefinery, 2024:1-16. doi: 10.1007/s13399-024-05764-2
|
| [5] |
臧金秋,杨传玺,王小宁,等. 生物炭吸附水中污染物的性能、机理和环境风险[J]. 工业水处理,2023,43(12):1-13.
|
|
ZANG Jinqiu, YANG Chuanxi, WANG Xiaoning,et al. Performance,mechanism and environmental risk on adsorption removal of pollutants in water using biochar[J]. Industrial Water Treatment,2023,43(12):1-13.
|
| [6] |
来张汇,吴山,李涵,等. 不同热解温度的秸秆源生物炭对Cd(Ⅱ)吸附机理[J]. 南昌大学学报(理科版),2022,46(4):446-453.
|
|
LAI Zhanghui, WU Shan, LI Han,et al. Adsorption mechanism research of Cd2+ by rice straw biochar at different pyrolysis temperatures[J]. Journal of Nanchang University (Natural Science),2022,46(4):446-453.
|
| [7] |
刘成昊,林春岭,钟来元,等. 甘蔗渣生物炭对水体铬吸附反应研究[J]. 广东农业科学,2021,48(8):90-97.
|
|
LIU Chenghao, LIN Chunling, ZHONG Laiyuan,et al. Study on adsorption of chromium by bagasse biochar[J]. Guangdong Agricultural Sciences,2021,48(8):90-97.
|
| [8] |
ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2013, 128:593-597. doi: 10.1016/j.biortech.2012.10.150
|
| [9] |
郑佳豪,江惟,陈思莉,等. 复合材料MnO2/MCM-41对放射性废水中Sr2+的去除[J]. 工业水处理,2024,44(2):105-111.
|
|
ZHENG Jiahao, JIANG Wei, CHEN Sili,et al. Removal of Sr2+ from radioactive wastewater by the composite MnO2/MCM-41[J]. Industrial Water Treatment,2024,44(2):105-111.
|
| [10] |
SHEN Qiqing, WU Hongwei. Rapid pyrolysis of biochar prepared from slow and fast pyrolysis:The effects of particle residence time on char properties[J]. Proceedings of the Combustion Institute, 2023, 39(3):3371-3378. doi: 10.1016/j.proci.2022.07.119
|
| [11] |
孙玲,贾明云,刘壮壮,等. 不同热解温度和升温速率下杨树枝条生物质炭产率和理化性质分析[J]. 植物资源与环境学报,2023,32(3):71-82.
|
|
SUN Ling, JIA Mingyun, LIU Zhuangzhuang,et al. Analyses on yield and physicochemical properties of poplar branch biochars at different pyrolysis temperatures and heating rates[J]. Journal of Plant Resources and Environment,2023,32(3):71-82.
|
| [12] |
ANCA-COUCE A, DIEGUEZ-ALONSO A, ZOBEL N,et al. Influence of heterogeneous secondary reactions during slow pyrolysis on char oxidation reactivity of woody biomass[J]. Energy & Fuels, 2017, 31(3):2335-2344. doi: 10.1021/acs.energyfuels.6b02350
|
| [13] |
HU Qiang, CHENG Wei, MAO Qiaoting,et al. Study on the physicochemical structure and gasification reactivity of chars from pyrolysis of biomass pellets under different heating rates[J]. Fuel, 2022, 314:122789. doi: 10.1016/j.fuel.2021.122789
|
| [14] |
张春媛,骆灵喜,李晨,等. 基于正交试验设计的改性污泥基生物炭制备研究[J]. 绿色科技,2024,26(4):143-146.
|
|
ZHANG Chunyuan, LUO Lingxi, LI Chen,et al. Study on preparation conditions of modified sludge biochar based on orthogonal experimental design[J]. Journal of Green Science and Technology,2024,26(4):143-146.
|
| [15] |
WANG Zengzhen, XU Jia, YELLEZUOME D,et al. Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb (Ⅱ) adsorption properties in aqueous solutions[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157:105214. doi: 10.1016/j.jaap.2021.105214
|
| [16] |
SUN Junna, HE Fuhong, PAN Yinghua,et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types[J]. Acta Agriculturae Scandinavica,Section B-Soil & Plant Science, 2017, 67(1):12-22. doi: 10.1080/09064710.2016.1214745
|
| [17] |
李晓亮,杨世先,杨进成,等. 火龙珠种子无菌萌发研究[J]. 安徽农业科学,2021,49(23):140-142.
|
|
LI Xiaoliang, YANG Shixian, YANG Jincheng,et al. Study on seed aseptic germination of hypericum[J]. Journal of Anhui Agricultural Sciences,2021,49(23):140-142.
|
| [18] |
袁彤. 热解过程中生物炭形成机理的研究[D]. 烟台:烟台大学,2020.
|
|
YUAN Tong. Study on the formation mechanism of biochar during pyrolysis[D]. Yantai:Yantai University,2020.
|
| [19] |
李轲,余健霞,张杰华,等. 响应面法优化山药红薯粉条加工工艺及品质研究[J]. 粮食加工,2024,49(3):31-37.
|
|
LI Ke, YU Jianxia, ZHANG Jiehua,et al. Title study on optimization of processing technology and quality of yam sweet potato noodles by response surface methodology[J]. Grain Processing,2024,49(3):31-37.
|
| [20] |
徐浩,张凡,于鑫,等. 铁铜微电解-Fenton联合工艺去除磺胺甲 唑和卡马西平[J]. 工业水处理,2025,35(3):55-64.
|
|
XU Hao, ZHANG Fan, YU Xin,et al. Removal of sulfamethoxazole and carbamazepine by Fe-Cu microelectrolysis combined with Fenton process[J]. Industrial Water Treatment,2025,35(3):55-64.
|
| [21] |
袁可,李瑞鹏,单文澜. 响应面法优化焦化废水生化尾水混凝药剂投加量研究[J]. 工业水处理,2024,44(1):157-161.
|
|
YUAN Ke, LI Ruipeng, SHAN Wenlan. Optimization of coagulant dosage for bio-treated coking wastewater by response surface method[J]. Industrial Water Treatment,2024,44(1):157-161.
|
| [22] |
杜津昊,季彬,梁燕,等. 响应面法优化荞麦食醋酒精发酵工艺[J]. 中国酿造,2024,43(5):162-167.
|
|
DU Jinhao, JI Bin, LIANG Yan,et al. Optimization of alcoholic fermentation technology for buckwheat vinegar by response surface methodology[J]. China Brewing,2024,43(5):162-167.
|
| [23] |
张瑞刚,吴娟. 响应面法优化磁性酵母微球对废水中Cr的吸附[J]. 广州化工,2023,51(13):173-177.
|
|
ZHANG Ruigang, WU Juan. Optimization of adsorption of Cr in wastewater by magnetic yeast microspheres using response surface methodology[J]. Guangzhou Chemical Industry,2023,51(13):173-177.
|