| [1] |
WANG Pengfei, ZHAO Zhiyong, ZHANG Lijun,et al. Revealing the role of binary distortion in PMS activation over spinel toward efficient new pollutants removal[J]. Advanced Functional Materials, 2024, 34(25):2316542. doi: 10.1002/adfm.202316542
|
| [2] |
CAO Daqi, FANG Rongkun, SONG Yixuan,et al. Contact-electro-catalysis for degradation of trace antibiotics in wastewater[J]. Chemical Engineering Journal, 2024, 487:150531. doi: 10.1016/j.cej.2024.150531
|
| [3] |
CALVETE M J F, PICCIRILLO G, VINAGREIRO C S,et al. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics[J]. Coordination Chemistry Reviews, 2019, 395:63-85. doi: 10.1016/j.ccr.2019.05.004
|
| [4] |
YANG Jiaomei, TIAN Shufang, SONG Zhen,et al. Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics[J]. Coordination Chemistry Reviews, 2025, 523:216257. doi: 10.1016/j.ccr.2024.216257
|
| [5] |
BARHOUMI N, OTURAN N, AMMAR S,et al. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis[J]. Environmental Chemistry Letters, 2017, 15(4):689-693. doi: 10.1007/s10311-017-0638-y
|
| [6] |
JIANG Wenli, XIA Xue, HAN Jinglong,et al. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol[J]. Environmental Science & Technology, 2018, 52(17):9972-9982. doi: 10.1021/acs.est.8b01894
|
| [7] |
ZHAO Kun, SU Yan, QUAN Xie,et al. Enhanced H 2O 2 production by selective electrochemical reduction of O 2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis, 2018, 357:118-126. doi: 10.1016/j.jcat.2017.11.008
|
| [8] |
LU Zhiyi, CHEN Guangxu, SIAHROSTAMI S,et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1:156-162. doi: 10.1038/s41929-017-0017-x
|
| [9] |
ZENG Feng, MEBRAHTU C, LIAO Longfei,et al. Stability and deactivation of OER electrocatalysts:A review[J]. Journal of Energy Chemistry, 2022(6):301-329. doi: 10.1016/j.jechem.2022.01.025
|
| [10] |
CAO Peike, QUAN Xie, NIE Xiaowa,et al. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents[J]. Nature Communications, 2023, 14(1):172. doi: 10.1038/s41467-023-35839-z
|
| [11] |
SHEIKH OMAR A AL, SALEHI F M, BAI M,et al. In situ nanocompression of carbon black to understand the tribology of contaminated diesel engine oils[J]. Carbon, 2023, 212:118170. doi: 10.1016/j.carbon.2023.118170
|
| [12] |
MUZENDA C, AROTIBA O A. Improved magnetite nanoparticle immobilization on a carbon felt cathode in the heterogeneous electro-Fenton degradation of aspirin in wastewater[J]. ACS Omega, 2022, 7(23):19261-19269. doi: 10.1021/acsomega.2c00627
|
| [13] |
LI Hongxiang, LI Yun, WANG Changbin,et al. Improved degradation of iohexol using electro-enhanced activation of persulfate by a Cu x O-loaded carbon felt with carbon nanotubes as an interlayer[J]. Separation and Purification Technology, 2023, 312:123336. doi: 10.1016/j.seppur.2023.123336
|
| [14] |
YOON S, KANG S H, CHOI J,et al. Regulating entanglement networks of fibrillatable binders for sub-20-µm thick,robust,dry-processed solid electrolyte membranes in all-solid-state batteries[J]. Small, 2025, 21(13):2407882. doi: 10.1002/smll.202407882
|
| [15] |
YAN Kexin, QIN Yingnan, XUE Junjie,et al. O modified N-doped carbon nanotubes enhanced 2e - oxygen reduction reaction via antibonding activation for efficient antibactrial in netural media[J]. Chemical Engineering Journal, 2024, 484:149363. doi: 10.1016/j.cej.2024.149363
|
| [16] |
TIAN Yanye, LI Yingtong, YING Guangguo,et al. Oxygen functionalization of carbon nanotubes shifted the formation pathway of hydroxyl radicals in catalytic ozonation:The overlooked role of hydrogen peroxide[J]. ACS ES&T Engineering, 2024, 4(12):3021-3031. doi: 10.1021/acsestengg.4c00403
|
| [17] |
CHENG Gang, ZHOU Xin, DU Chongyu,et al. Adsorption and separation of lead ions in phosphoric acid by Co-doped carbon nanotubes with sulfur,oxygen,and manganese[J]. Journal of Industrial and Engineering Chemistry, 2025, 141:193-202. doi: 10.1016/j.jiec.2024.06.029
|
| [18] |
LI Hongxiang, SONG Haiou, LAI Qian,et al. A Gd 3+-doped blue TiO 2 nanotube array anode for efficient electrocatalytic degradation of iohexol[J]. Separation and Purification Technology, 2022, 301:122007. doi: 10.1016/j.seppur.2022.122007
|
| [19] |
CHOI J S, FORTUNATO G V, JUNG D C,et al. Catalyst durability in electrocatalytic H 2O 2 production:Key factors and challenges[J]. Nanoscale Horizons, 2024, 9(8):1250-1261. doi: 10.1039/d4nh00109e
|
| [20] |
GAO Ying, ZHU Weihuang, LI Yaqi,et al. Novel porous carbon felt cathode modified by cyclic voltammetric electrodeposited polypyrrole and anthraquinone 2-sulfonate for an efficient electro-Fenton process[J]. International Journal of Hydrogen Energy, 2021, 46(15):9707-9717. doi: 10.1016/j.ijhydene.2020.04.197
|
| [21] |
GAO Jiamin, ZHOU Yujun, ZHANG Wei,et al. Binder-free Fe(Ⅱ) sustained-release electrode for enhanced flow-through electro-Fenton degradation on aniline-containing wastewater[J]. ACS ES&T Water, 2024, 4(10):4625-4635. doi: 10.1021/acsestwater.4c00679
|
| [22] |
MIDASSI S, BEDOUI A, BENSALAH N. Efficient degradation of chloroquine drug by electro-Fenton oxidation:Effects of operating conditions and degradation mechanism[J]. Chemosphere, 2020, 260:127558. doi: 10.1016/j.chemosphere.2020.127558
|
| [23] |
冯凡,郭波,曹群,等. CNT负载纳米铁阴极电芬顿降解左氧氟沙星[J]. 中国环境科学,2024,44(10):5513-5521.
|
|
FENG Fan, GUO Bo, CAO Qun,et al. Degradation of levofloxacin by electro-Fenton with CNT supported nano-iron cathode[J]. China Environmental Science,2024,44(10):5513-5521.
|
| [24] |
FAN Songyu, HOU Yanping, PAN Jinghui,et al. Cu-doped V-based MOF derivative VO 2@Cu-VMOF as a cathodic catalyst for electro-Fenton degradation of antibiotics[J]. Small, 2025, 21(1):2406523. doi: 10.1002/smll.202406523
|
| [25] |
WANG Yang, LI Shuaishuai, HOU Chen,et al. Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA[J]. Separation and Purification Technology, 2022, 282:120059. doi: 10.1016/j.seppur.2021.120059
|
| [26] |
LU Yao, FENG Minquan, WANG Yibo. Enhancing the heterogeneous electro-Fenton degradation of methylene blue using sludge-derived biochar-loaded nano zero-valent iron[J]. Journal of Water Process Engineering, 2024, 59:104980. doi: 10.1016/j.jwpe.2024.104980
|
| [27] |
TAHERIASHTIANI N, AYATI B. Using chitosan-based heterogeneous catalyst for degradation of Acid Blue 25 in the effective electro-Fenton process with rotating cathodes[J]. Journal of Electroanalytical Chemistry, 2022, 905:115983. doi: 10.1016/j.jelechem.2021.115983
|
| [28] |
LI Yixiang, YAO Bin, CHEN Yuxin,et al. Metal-organic frameworks(MOFs) as efficient catalysts for electro-Fenton(EF) reactions:Current progress and prospects[J]. Chemical Engineering Journal, 2023, 463:142287. doi: 10.1016/j.cej.2023.142287
|
| [29] |
罗长鑫,田曦,李鹏程,等. 电芬顿耦合工艺氧化降解制药废水研究进展[J]. 当代化工,2024,53(7):1716-1719.
|
|
LUO Changxin, TIAN Xi, LI Pengcheng,et al. Research progress in degradation of pharmaceutical wastewater by electro-Fenton coupling process[J]. Contemporary Chemical Industry,2024,53(7):1716-1719.
|