1 |
ALI I , GUPTA V K . Advances in water treatment by adsorption technology[J]. Nature Protocols, 2007, 1 (6): 2661- 2667.
URL
|
2 |
ZHU Huijie , JIA Yongfeng , WU Xing , et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J]. Journal of Hazardous Materials, 2009, 172 (2/3): 1591- 1596.
URL
|
3 |
KIM H , HONG H J , JUNG J , et al. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron(nZVI) immobilized in alginate bead[J]. Journal of Hazardous Materials, 2010, 176 (1/2/3): 1038- 1043.
URL
|
4 |
ZHAO Xueqin , DOU Xiaomin , MOHAN D , et al. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 247, 250- 257.
doi: 10.1016/j.cej.2014.02.096
|
5 |
PONDER S M , DARAB J G , MALLOUK T E , et al. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000, 34 (12): 2564- 2569.
URL
|
6 |
BHAUMIK M , CHOI H J , MCCRINDLE R I , et al. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: High performance for water treatment applications[J]. Journal of Colloid and Interface Science, 2014, 425, 75- 82.
doi: 10.1016/j.jcis.2014.03.031
|
7 |
RAVIKUMAR K V G , ARGULWAR S , SUDAKARAN S V , et al. Nano-Bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition[J]. Environmental Technology & Innovation, 2018, 9, 122- 133.
|
8 |
WU S J , LIOU T H , MI F L . Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium[J]. Bioresource Technology, 2009, 100 (19): 4348- 4353.
doi: 10.1016/j.biortech.2009.04.013
|
9 |
JAVADIAN H . Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(Ⅱ) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2014, 20 (6): 4233- 4241.
doi: 10.1016/j.jiec.2014.01.026
|
10 |
WANG Jianqiang , PAN Kai , HE Qiwei , et al. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution[J]. Journal of Hazardous Materials, 2013, 244/245, 121- 129.
doi: 10.1016/j.jhazmat.2012.11.020
|
11 |
BHAUMIK M , MAITY A , SRINIVASU V V , et al. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers[J]. Chemical Engineering Journal, 2012, 81/182, 323- 333.
URL
|
12 |
CHECKOL F , ELFWING A , GRECZYNSKI G , et al. Highly stable and efficient lignin-PEDOT/PSS composites for removal of toxic metals[J]. Advanced Sustainable Systems, 2018, 2, 1700114.
doi: 10.1002/adsu.201700114
|
13 |
WU Aihua , JIA Jin , LUAN Shengji . Amphiphilic PMMA/PEI coreshell nanoparticles as polymeric adsorbents to remove heavy metal pollutants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384 (1/2/3): 180- 185.
URL
|
14 |
YAN Han , YANG Lingyun , YANG Zhen , et al. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(Ⅱ) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2012, 229/230, 371- 380.
doi: 10.1016/j.jhazmat.2012.06.014
|
15 |
TALEB M F A , ELSIGENY S M , IBRAHIM M M . Radiation synthesis and characterization of polyamidoamine dendrimer macromolecules with different loads of nickel salt for adsorption of some metal ion[J]. Radiation Physics and Chemistry, 2007, 76 (10): 1612- 1618.
doi: 10.1016/j.radphyschem.2007.02.008
|
16 |
LIU Ke , CHENG Pan , KONG Chuncai , et al. A Readily accessible functional nanofibrous membrane for high-capacity immobilization of Ag nanoparticles and ultrafast catalysis application[J]. Advanced Materials Interfaces, 2019, 6 (5): 1801617.
doi: 10.1002/admi.201801617
|
17 |
LIU Chao , YANG Li , ZHANG Jiaxu , et al. Facile fabrication of a heterogeneous Co-modified pyridinecarboxaldehyde-polyethylenimine catalyst for efficient CO2 conversion under mild conditions[J]. Inorganic Chemistry Frontiers, 2020, 7 (5): 1140- 1147.
doi: 10.1039/C9QI01401B
|
18 |
GODIYA C B , SAYED S M , XIAO YONGHOU , et al. Highly porous egg white/polyethyleneimine hydrogel for rapid removal of heavy metal ions and catalysis in wastewater[J]. Reactive & Functional Polymers, 2020, 149, 104509.
URL
|
19 |
PANG Ya , ZENG Guangming , TANG Lin , et al. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions[J]. Desalination, 2011, 281, 278- 284.
doi: 10.1016/j.desal.2011.08.001
|
20 |
CUMBAL L , SENGUPTA A K . Arsenic removal using polymer-supported hydrated iron(Ⅲ) oxide nanoparticles: Role of donnan membrane effect[J]. Environmental Science & Technology, 2005, 39 (17): 6508- 6515.
URL
|
21 |
WANG Niejun , ZHOU Lilin , GUO Jun , et al. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin[J]. Applied Surface Science, 2014, 305, 267- 273.
doi: 10.1016/j.apsusc.2014.03.054
|
22 |
YU Yichang , HU Zhangjun , CHEN Zhenyong , et al. Organicallymodified magnesium silicate nanocomposites for high-performance heavy metal removal[J]. RSC Advances, 2016, 6 (100): 97523- 97531.
doi: 10.1039/C6RA20181D
|
23 |
GHOUL M , BACQUET M , MORCELLET M . Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels[J]. Water Research, 2003, 37 (4): 729- 734.
doi: 10.1016/S0043-1354(02)00410-4
|
24 |
YIN Ping , XU Qiang , QU Rongjun , et al. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material[J]. Journal of Hazardous Materials, 2010, 173 (1/2/3): 710- 716.
URL
|
25 |
GAO Baojiao , GAO Yuechao , LI Yanbin . Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions[J]. Chemical Engineering Journal, 2010, 158 (3): 542- 549.
doi: 10.1016/j.cej.2010.01.046
|
26 |
SHAHBAZI A , YOUNESI H , BADIEI A . Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal, 2011, 168 (2): 505- 518.
doi: 10.1016/j.cej.2010.11.053
|
27 |
LIU Yan , LIU Zhanchao , GAO Jie , et al. Selective adsorption behavior of Pb(Ⅱ) by mesoporous silica SBA-15-supported Pb(Ⅱ)- imprinted polymer based on surface molecularly imprinting technique[J]. Journal of Hazardous Materials, 2011, 186 (1): 197- 205.
doi: 10.1016/j.jhazmat.2010.10.105
|
28 |
WU Shengjun , LI Fengting , WANG Hongtao , et al. Effects of poly (vinyl alcohol)(PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution[J]. Polymer, 2010, 51 (26): 6203- 6211.
doi: 10.1016/j.polymer.2010.10.015
|
29 |
HUANG Qiang , LIU Meiying , ZHAO Jiao , et al. Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal[J]. Applied Surface Science, 2018, 427, 535- 544.
doi: 10.1016/j.apsusc.2017.08.233
|
30 |
NIU Yuzhong , QU Rongjun , CHEN Hou , et al. Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of Hg(Ⅱ) from aqueous solution[J]. Journal of Hazardous Materials, 2014, 278, 267- 278.
doi: 10.1016/j.jhazmat.2014.06.012
|
31 |
BARAKAT M A , RAMADAN M H , ALGHAMDI M A , et al. Remediation of Cu(Ⅱ), Ni(Ⅱ), and Cr(Ⅲ) ions from simulated wastewater by dendrimer/titania composites[J]. Journal of Environmental Management, 2013, 117, 50- 57.
URL
|
32 |
CASTILLO V A , BARAKAT M A , RAMADAN M H , et al. Metal ion remediation by polyamidoamine dendrimers: A comparison of metal ion, oxidation state, and titania immobilization[J]. International Journal of Environmental Science and Technology, 2014, 11 (6): 1497- 1502.
doi: 10.1007/s13762-013-0346-5
|
33 |
FALLAH Z , NASR I H , TAJBAKHSH M , et al. TiO2-grafted cellulose via click reaction: An efficient heavy metal ions bioadsorbent from aqueous solutions[J]. Cellulose, 2018, 25 (1): 639- 660.
doi: 10.1007/s10570-017-1563-8
|
34 |
FAN Lulu , LUO Chuannan , SUN Min , et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103 (1): 523- 529.
URL
|
35 |
CHEN Yunqinag , CHEN Libin , BAI Hua , et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A, 2013, 1 (6): 1992- 2001.
doi: 10.1039/C2TA00406B
|
36 |
HE Yongqiang , ZHANG Nana , WANG Xiaodong . Adsorption of graphene oxide/chitosan porous materials for metal ions[J]. Chinese Chemical Letters, 2011, 22 (7): 859- 862.
doi: 10.1016/j.cclet.2010.12.049
|
37 |
LI Leilei , FAN Lulu , SUN Min , et al. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107, 76- 83.
doi: 10.1016/j.colsurfb.2013.01.074
|
38 |
XIAO Wenda , YAN Bin , ZENG Hongbo , et al. Dendrimer functionalized graphene oxide for selenium removal[J]. Carbon, 2016, 105, 655- 664.
doi: 10.1016/j.carbon.2016.04.057
|
39 |
WANG Yajie , WANG Qiang , SONG Xiaoping , et al. Hydrophilic polyethylenimine modified magnetic graphene oxide composite as an efficient support for dextranase immobilization with improved stability and recyclable performance[J]. Biochemical Engineering Journal, 2019, 141, 163- 172.
doi: 10.1016/j.bej.2018.10.015
|
40 |
LI Renjie , LIU Lifen , YANG Fenglin . Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(Ⅱ)[J]. Chemical Engineering Journal, 2013, 229, 460- 468.
doi: 10.1016/j.cej.2013.05.089
|
41 |
YANG Yongfang , XIE Yulei , PANG Lichuan , et al. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(Ⅱ) and methylene blue[J]. Langmuir, 2013, 29 (34): 10727- 10736.
doi: 10.1021/la401940z
|
42 |
SONG Wencheng , WANG Xiangxue , WANG Qi , et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics, 2015, 17 (1): 398- 406.
doi: 10.1039/C4CP04289A
|