| 1 | QIAO Panzhe ,  WU Jiaxing ,  LI Haoze , et al.  Plasmon Ag-promoted solar-thermal conversion on floating carbon cloth for seawater desalination and sewage disposal[J]. ACS Applied Materials & Interfaces, 2019, 11 (7): 7066- 7073. URL
 | 
																													
																						| 2 | DONG Hang ,  SHEPSKO ,  CHELSEY S , et al.  Hybrid ion exchange desalination(HIX-Desal) of impaired brackish water using pressurized carbon dioxide(CO2) as the source of energy and regenerant[J]. Environmental Science & Technology Letters, 2018, 5 (11): 701- 706. URL
 | 
																													
																						| 3 | AHMED M A ,  TEWARI S .  Capacitive deionization: Processes, materials and state of the technology[J]. Journal of Electroanalytical Chemistry, 2018, 813, 178- 192. doi: 10.1016/j.jelechem.2018.02.024
 | 
																													
																						| 4 | CHEN Chao ,  JIANG Yilin ,  YE Zhaoyong , et al.  Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China[J]. Global Energy Interconnection, 2019, 2 (2): 98- 113. doi: 10.1016/j.gloei.2019.07.009
 | 
																													
																						| 5 | GAO X ,  OMOSEBI A ,  HOLUBOWITCH N , et al.  Capacitive deionization using alternating polarization: Effect of surface charge on salt removal[J]. Electrochimica Acta, 2017, 233, 249- 255. doi: 10.1016/j.electacta.2017.03.021
 | 
																													
																						| 6 | HAWKS S A ,  RAMACHANDRAN A ,  CAMPBELL P G , et al.  Performance metrics for the objective assessment of capacitive deionization systems[J]. Water Research, 2019, 152, 126- 137. doi: 10.1016/j.watres.2018.10.074
 | 
																													
																						| 7 | 张须媚, 王霜, 高娟娟, 等.  电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, 44 (9): 16- 21. URL
 | 
																													
																						| 8 | XING Wenle ,  LIANG Jie ,  TANG Wangwang , et al.  Versatile applications of capacitive deionization(CDI)-based technologies[J]. Desalination, 2020, 482, 114390. doi: 10.1016/j.desal.2020.114390
 | 
																													
																						| 9 | HAN Bing ,  CHENG Gong ,  WANG Yunkai , et al.  Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization[J]. Chemical Engineering Journal, 2019, 360, 364- 384. doi: 10.1016/j.cej.2018.11.236
 | 
																													
																						| 10 | SINGH K ,  PORADA S ,  DE GIER H D , et al.  Timeline on the application of intercalation materials in Capacitive Deionization[J]. Desalination, 2019, 455, 115- 134. doi: 10.1016/j.desal.2018.12.015
 | 
																													
																						| 11 | CHEN Zhaolin ,  ZHANG Hongtao ,  WU Chunxu , et al.  A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization[J]. Desalination, 2015, 369, 46- 50. doi: 10.1016/j.desal.2015.04.022
 | 
																													
																						| 12 | YOON H ,  LEE J ,  KIM S , et al.  Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control[J]. Desalination, 2016, 392, 46- 53. doi: 10.1016/j.desal.2016.03.019
 | 
																													
																						| 13 | LI Bei ,  ZHENG Tianye ,  RAN Sijia , et al.  Performance recovery in degraded carbon-based electrodes for capacitive deionization[J]. Environmental Science & Technology, 2020, 54 (3): 1848- 1856. URL
 | 
																													
																						| 14 | LIU Yihan ,  ZHANG Xiongfei ,  GU Xiao , et al.  One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization[J]. Microporous and Mesoporous Materials, 2020, 303, 110303. doi: 10.1016/j.micromeso.2020.110303
 | 
																													
																						| 15 | BIAN Yanhong ,  LIANG Peng ,  YANG Xufei , et al.  Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization[J]. Desalination, 2016, 381, 95- 99. doi: 10.1016/j.desal.2015.11.016
 | 
																													
																						| 16 | WANG Shuo ,  WANG Dazhi ,  JI Lijun , et al.  Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes[J]. Separation and Purification Technology, 2007, 58 (1): 12- 16. doi: 10.1016/j.seppur.2007.07.005
 | 
																													
																						| 17 | XU Ke ,  LIU Yanhui ,  AN Zihan , et al.  The polymeric conformational effect on capacitive deionization performance of graphene oxide/polypyrrole composite electrode[J]. Desalination, 2020, 486, 114407. doi: 10.1016/j.desal.2020.114407
 | 
																													
																						| 18 | DIANBUDIYANTO W ,  LIU Shouheng .  Outstanding performance of capacitive deionization by a hierarchically porous 3D architectural graphene[J]. Desalination, 2019, 152, 126- 137. URL
 | 
																													
																						| 19 | SUFIANI O ,  ELISADIKI J ,  MACHUNDA R L , et al.  Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications[J]. Journal of Electroanalytical Chemistry, 2019, 848, 113328. doi: 10.1016/j.jelechem.2019.113328
 | 
																													
																						| 20 | CHEN Zhaolin ,  ZHANG Hongtao ,  WU Chunxu , et al.  A study of the effect of carbon characteristics on capacitive deionization(CDI) performance[J]. Desalination, 2018, 433, 68- 74. doi: 10.1016/j.desal.2017.11.036
 | 
																													
																						| 21 | MIN B H ,  CHOI J H ,  JUNG K Y .  Improved capacitive deionization of sulfonated carbon/titania hybrid electrode[J]. Electrochimica Acta, 2018, 270, 543- 551. doi: 10.1016/j.electacta.2018.03.079
 | 
																													
																						| 22 | HAQ O ,  CHOI D S ,  CHOI J , et al.  Carbon electrodes with ionic functional groups for enhanced capacitive deionization performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 83, 136- 144. doi: 10.1016/j.jiec.2019.11.021
 | 
																													
																						| 23 | JUNG Y ,  YAN Y ,  KIM T , et al.  Enhanced electrochemical stability of a Zwitterionic-Polymer-Functionalized electrode for capacitive deionization[J]. ACS Applied Materials & Interfaces, 2018, 10 (7): 6207- 6217. URL
 | 
																													
																						| 24 | KIM K H ,  KANG D H ,  KIM M J , et al.  Effect of C-F bonds introduced by fluorination on the desalination properties of activated carbon as the cathode for capacitive deionization[J]. Desalination, 2019, 457, 1- 7. doi: 10.1016/j.desal.2018.12.005
 | 
																													
																						| 25 | DREYER D R ,  PARK S ,  BIELAWSKI C W , et al.  The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39 (1): 228- 240. | 
																													
																						| 26 | PORADA ,  S ,  ZHAO R ,  VAN DER WAL A , et al.  Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58 (8): 1388- 1442. doi: 10.1016/j.pmatsci.2013.03.005
 | 
																													
																						| 27 | ZHANG Xumei ,  XIE Kangjun ,  GAO Juanjuan , et al.  Highly poreexpanded benzidine-functionalized graphene framework for enhanced capacitive deionization[J]. Desalination, 2018, 445, 149- 158. doi: 10.1016/j.desal.2018.08.001
 | 
																													
																						| 28 | GONG Xuezhong ,  LIU Guozhen ,  LI Yingshun , et al.  Functionalizedgraphene composites: Fabrication and applications in sustainable energy and environment[J]. Chemistry of Materials, 2016, 28 (22): 8082- 8118. doi: 10.1021/acs.chemmater.6b01447
 | 
																													
																						| 29 | 张树鹏, 宋海欧, 钱沁莱, 等.  增强功能化石墨烯分散性及热稳定性的共价修饰策略[J]. 化学通报, 2013, 76, 506- 511. URL
 | 
																													
																						| 30 | 钱悦月, 张树鹏, 高娟娟, 等.  石墨烯非共价功能化及其应用[J]. 化学通报, 2015, 78, 497- 504. URL
 | 
																													
																						| 31 | MI Mengjuan ,  LIU Xiaojun ,  KONG Weiqing , et al.  Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization[J]. Desalination, 2019, 464, 18- 24. doi: 10.1016/j.desal.2019.04.014
 | 
																													
																						| 32 | BAUTISTA-PATACSIL L ,  LAZARTE J P L ,  DIPASUPIL R C , et al.  Deionization utilizing reduced graphene oxide-titanium dioxide nanotubes composite for the removal of Pb2+ and Cu2+[J]. Journal of Environmental Chemical Engineering, 2020, 8 (3): 103063. doi: 10.1016/j.jece.2019.103063
 | 
																													
																						| 33 | HU Shen ,  XIE Kangjun ,  ZHANG Xumei , et al.  Significantly enhanced capacitance deionization performance by coupling activated carbon with triethyltetramine-functionalized graphene[J]. Chemical Engineering Journal, 2020, 384, 123317. doi: 10.1016/j.cej.2019.123317
 | 
																													
																						| 34 | SONG Haiou ,  WU Yifan ,  ZHANG Shupeng , et al.  Mesoporous generation-inspired ultrahigh capacitive deionization performance by sono-assembled activated carbon/inter-connected graphene network architecture[J]. Electrochimica Acta, 2016, 205, 161- 169. doi: 10.1016/j.electacta.2016.04.082
 | 
																													
																						| 35 | XING Fei ,  LI Tao ,  LI Junye , et al.  Chemically exfoliated MoS2 for capacitive deionization of saline water[J]. Nano Energy, 2017, 31, 590- 595. doi: 10.1016/j.nanoen.2016.12.012
 | 
																													
																						| 36 | JIA Feifei ,  SUN Kaige ,  YANG Bingqiao , et al.  Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water[J]. Desalination, 2018, 446, 21- 30. doi: 10.1016/j.desal.2018.08.024
 | 
																													
																						| 37 | WANG Qingmiao ,  JIA Feifei ,  SONG Shaoxian , et al.  Hydrophilic MoS2/polydopamine(PDA) nanocomposites as the electrode for enhanced capacitive deionization[J]. Separation and Purification Technology, 2020, 236, 116298. doi: 10.1016/j.seppur.2019.116298
 | 
																													
																						| 38 | TIAN Shichao ,  ZHANG Xihui ,  ZHANG Zhenghua .  Capacitive deionization with MoS2/g-C3N4 electrodes[J]. Desalination, 2020, 479, 114348. doi: 10.1016/j.desal.2020.114348
 | 
																													
																						| 39 | HOU C H ,  LIU N L ,  HSU H L , et al.  Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization[J]. Separation & Purification Technology, 2014, 130, 7- 14. URL
 | 
																													
																						| 40 | MA Dongya ,  WANG Yue ,  CAI Yanmeng , et al.  Multifunctional group sulfobutyl ether β-cyclodextrin polymer treated CNT as the cathode for enhanced performance in asymmetric capacitive deionization[J]. Electrochimica Acta, 2019, 313, 321- 330. doi: 10.1016/j.electacta.2019.05.041
 | 
																													
																						| 41 | ZENG Tianyu ,  WANG Liwen ,  FENG Lu , et al.  Two novel organic phosphorous-based MOFs: Synthesis, characterization and photocatalytic properties[J]. Dalton Transactions, 2019, 48 (2): 523- 534. doi: 10.1039/C8DT04106G
 | 
																													
																						| 42 | ZONG Mingzhu ,  ZHANG Yuyan ,  LI Kexun , et al.  Zeolitic imidazolate framework-8 derived two-dimensional N-doped amorphous mesoporous carbon nanosheets for efficient capacitive deionization[J]. Electrochimica Acta, 2020, 329, 135089. doi: 10.1016/j.electacta.2019.135089
 | 
																													
																						| 43 | LIU Yong ,  XU Xintong ,  WANG Miao .  Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J]. Chemical Communications, 2015, 51 (60): 12020- 12023. doi: 10.1039/C5CC03999A
 | 
																													
																						| 44 | SHEN Jiaming ,  LI Yang ,  WANG Chaohai , et al.  Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J]. Electrochimica Acta, 2018, 273, 34- 42. doi: 10.1016/j.electacta.2018.04.004
 | 
																													
																						| 45 | ZHAO Yubo ,  ZHANG Yuyan ,  TIAN Pei , et al.  Nitrogen-rich mesoporous carbons derived from zeolitic imidazolate framework-8 for efficient capacitive deionization[J]. Electrochimica Acta, 2019, 321, 134665. doi: 10.1016/j.electacta.2019.134665
 | 
																													
																						| 46 | LI Yusen ,  CHEN Weiben ,  XING Guolong , et al.  New synthetic strategies toward covalent organic frameworks[J]. Chemical Society Reviews, 2020, 49 (10): 2852- 2868. doi: 10.1039/D0CS00199F
 | 
																													
																						| 47 | LIU Daohua ,  NING Xunan ,  HONG Yanxiang , et al.  Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization[J]. Electrochimica Acta, 2019, 296, 327- 334. doi: 10.1016/j.electacta.2018.10.044
 | 
																													
																						| 48 | LI Danping ,  NING Xunan ,  HUANG Yue , et al.  Nitrogen-rich microporous carbon materials for high-performance membrane capacitive deionization[J]. Electrochimica Acta, 2019, 312, 251- 262. doi: 10.1016/j.electacta.2019.04.172
 | 
																													
																						| 49 | XIE Zhengzheng ,  SHANG Xiaohong ,  YAN Junbin , et al.  Biomassderived porous carbon anode for high-performance capacitive deionization[J]. Electrochimica Acta, 2018, 290, 666- 675. doi: 10.1016/j.electacta.2018.09.104
 | 
																													
																						| 50 | LADO J J ,  ZORNITTA R L ,  VAZQUEZ , et al.  Sugarcane biowastederived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (23): 18992- 19004. URL
 | 
																													
																						| 51 | ZHANG Lu ,  LIU Yong ,  LU Ting , et al.  Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization[J]. Journal of Electroanalytical Chemistry, 2017, 804, 179- 184. doi: 10.1016/j.jelechem.2017.09.062
 | 
																													
																						| 52 | MUTHUKUMARASWAMY R V ,  EDATHIL A A ,  KANNANGARA Y Y , et al.  Tamarind shell derived N-doped carbon for capacitive deionization(CDI) studies[J]. Journal of Electroanalytical Chemistry, 2019, 848, 113307. doi: 10.1016/j.jelechem.2019.113307
 |