| 1 | Wang Jianlong ,  Wang Shizong .  Removal of pharmaceuticals and personal care products(PPCPs) from wastewater: A review[J]. Journal of Environmental Management, 2016, 182, 620- 640. doi: 10.1016/j.jenvman.2016.07.049
 | 
																													
																						| 2 | Wang Jianlong ,  Bai Zhiyong .  Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312, 79- 98. doi: 10.1016/j.cej.2016.11.118
 | 
																													
																						| 3 | Li W C .  Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil[J]. Environmental Pollution, 2014, 187, 193- 201. doi: 10.1016/j.envpol.2014.01.015
 | 
																													
																						| 4 | Klavarioti M ,  Mantzavinos D ,  Kassinos D .  Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes[J]. Environment International, 2009, 35 (2): 402- 417. doi: 10.1016/j.envint.2008.07.009
 | 
																													
																						| 5 | Wang Jianlong ,  Chu Libing .  Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview[J]. Radiation Physics and Chemistry, 2016, 125, 56- 64. doi: 10.1016/j.radphyschem.2016.03.012
 | 
																													
																						| 6 | Lutze H V ,  Bircher S ,  Rapp I , et al.  Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology, 2015, 49 (3): 1673- 1680. URL
 | 
																													
																						| 7 | Yang Ying ,  Guo Hongguang ,  Zhang Yongli , et al.  Degradation of bisphenol a using ozone/persulfate process: Kinetics and mechanism[J]. Water Air and Soil Pollution, 2016, 227 (2): 1- 12. doi: 10.1007/s11270-016-2746-x
 | 
																													
																						| 8 | Ghauch A ,  Tuqan A .  Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products[J]. Chemical Engineering Journal, 2012, 183, 162- 171. doi: 10.1016/j.cej.2011.12.048
 | 
																													
																						| 9 | Wang Jianlong ,  Wang Shizong .  Activation of persulfate(PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334, 1502- 1517. doi: 10.1016/j.cej.2017.11.059
 | 
																													
																						| 10 | Li Jun ,  Ren Yi ,  Ji Fangzhou , et al.  Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles[J]. Chemical Engineering Journal, 2017, 324, 63- 73. doi: 10.1016/j.cej.2017.04.104
 | 
																													
																						| 11 | Maruthamuthu P ,  Neta P .  Reactions of phosphate radicals with organic-compounds[J]. Journal of Physical Chemistry, 1977, 81 (17): 1622- 1625. doi: 10.1021/j100532a004
 | 
																													
																						| 12 | Tsitonaki A ,  Petri B ,  Crimi M , et al.  In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40 (1): 55- 91. doi: 10.1080/10643380802039303
 | 
																													
																						| 13 | Liang Chenju ,  Bruell C J ,  Marley M C , et al.  Thermally activated persulfate oxidation of trichloroethylene(TCE) and 1, 1, 1-trichloroethane(TCA) in aqueous systems and soil slurries[J]. Soil & Sediment Contamination, 2003, 12 (2): 207- 228. URL
 | 
																													
																						| 14 | Zheng Han ,  Bao Jianguo ,  Huang Ying , et al.  Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation[J]. Applied Catalysis B-Environmental, 2019, 259, 118056. doi: 10.1016/j.apcatb.2019.118056
 | 
																													
																						| 15 | Zhou Hongyu ,  Lai Leiduo ,  Wan Yanjian , et al.  Molybdenum disulfide(MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J]. Chemical Engineering Journal, 2020, 384, 123264. doi: 10.1016/j.cej.2019.123264
 | 
																													
																						| 16 | He Xuexiang ,  Mezyk S P ,  Michael I , et al.  Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation[J]. Journal of Hazardous Materials, 2014, 279, 375- 383. doi: 10.1016/j.jhazmat.2014.07.008
 | 
																													
																						| 17 | Zhao Long ,  Hou Hong ,  Fujii A , et al.  Degradation of 1, 4-dioxane in water with heat-and Fe2+-activated persulfate oxidation[J]. Environmental Science and Pollution Research, 2014, 21 (12): 7457- 7465. doi: 10.1007/s11356-014-2668-3
 | 
																													
																						| 18 | Liang Chenju ,  Su H W .  Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48 (11): 5558- 5562. URL
 | 
																													
																						| 19 | Yang Lie ,  Xue Jianmin ,  He Liuyang , et al.  Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: Influences, mechanisms and prospective[J]. Chemical Engineering Journal, 2019, 378, 122146. doi: 10.1016/j.cej.2019.122146
 | 
																													
																						| 20 | Matzek L W ,  Carter K E .  Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151, 178- 188. doi: 10.1016/j.chemosphere.2016.02.055
 | 
																													
																						| 21 | Huang Kunchang ,  Zhao Zhiqiang ,  Hoag G E , et al.  Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61 (4): 551- 560. doi: 10.1016/j.chemosphere.2005.02.032
 | 
																													
																						| 22 | Tan Chaoqun ,  Gao Naiyun ,  Deng Yang , et al.  Kinetic oxidation of antipyrine in heat-activated persulfate[J]. Desalination and Water Treatment, 2015, 53 (1): 263- 271. doi: 10.1080/19443994.2013.848414
 | 
																													
																						| 23 | Qi Chengdu ,  Liu Xitao ,  Zhao Wei , et al.  Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate[J]. Environmental Science and Pollution Research, 2015, 22 (6): 4670- 4679. doi: 10.1007/s11356-014-3718-6
 | 
																													
																						| 24 | Yang Shiying ,  Wang Ping ,  Yang Xin , et al.  Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179 (1/2/3): 552- 558. URL
 | 
																													
																						| 25 | Ferreira L C ,  Castro-Alferez M ,  Nahim-Granados S , et al.  Inactivation of water pathogens with solar photo-activated persulfate oxidation[J]. Chemical Engineering Journal, 2020, 381, 122275. doi: 10.1016/j.cej.2019.122275
 | 
																													
																						| 26 | Monteagudo J M ,  El-Taliawy H ,  Duran A , et al.  Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved[J]. Journal of Hazardous Materials, 2018, 357, 457- 465. doi: 10.1016/j.jhazmat.2018.06.031
 | 
																													
																						| 27 | Drzewicz P ,  Perez-Estrada L ,  Alpatova A , et al.  Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water[J]. Environmental Science & Technology, 2012, 46 (16): 8984- 8991. URL
 | 
																													
																						| 28 | Duan Xiaoguang ,  Sun Hongqi ,  Kang Jian , et al.  Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. Acs Catalysis, 2015, 5 (8): 4629- 4636. doi: 10.1021/acscatal.5b00774
 | 
																													
																						| 29 | Jans U ,  Hoigné J .  Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals[J]. Ozone: Science & Engineering, 1998, 20 (1): 67- 90. URL
 | 
																													
																						| 30 | Yun E T ,  Yoo H Y ,  Bae H , et al.  Exploring the role of persulfate in the activation process: Radical precursor versus electron acceptor[J]. Environmental Science & Technology, 2017, 51 (17): 10090- 10099. URL
 | 
																													
																						| 31 | Luo Haoyu ,  Lin Qintie ,  Zhang Xiaofeng , et al.  Determining the key factors of nonradical pathway in activation of persulfate by metalbiochar nanocomposites for bisphenol a degradation[J]. Chemical Engineering Journal, 2020, 391, 123555. doi: 10.1016/j.cej.2019.123555
 | 
																													
																						| 32 | Anipsitakis G P ,  Dionysiou D D .  Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38 (13): 3705- 3712. URL
 | 
																													
																						| 33 | Hu Peidong ,  Long Mingce .  Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B-Environmental, 2016, 181, 103- 117. doi: 10.1016/j.apcatb.2015.07.024
 | 
																													
																						| 34 | Rastogi A ,  Ai-Abed S R ,  Dionysiou D D .  Sulfate radical-based ferrous-peroxymonosulfate oxidative system for pcbs degradation in aqueous and sediment systems[J]. Applied Catalysis B-Environmental, 2009, 85 (3/4): 171- 179. URL
 | 
																													
																						| 35 | Lebik-Elhadi H ,  Frontistis Z ,  Ait-Amar H , et al.  Degradation of pesticide thiamethoxam by heat-activated and ultrasound-activated persulfate: Effect of key operating parameters and the water matrix[J]. Process Safety and Environmental Protection, 2020, 134, 197- 207. doi: 10.1016/j.psep.2019.11.041
 | 
																													
																						| 36 | Huang Zhihui ,  Ji Zhiyong ,  Zhao Yingying , et al.  Treatment of wastewater containing 2-methoxyphenol by persulfate with thermal and alkali synergistic activation: Kinetics and mechanism[J]. Chemical Engineering Journal, 2020, 380, 122411. doi: 10.1016/j.cej.2019.122411
 | 
																													
																						| 37 | Pan Yuwei ,  Zhang Ying ,  Zhou Minghua , et al.  Enhanced removal of emerging contaminants using persulfate activated by UV and premagnetized Fe0[J]. Chemical Engineering Journal, 2019, 361, 908- 918. doi: 10.1016/j.cej.2018.12.135
 | 
																													
																						| 38 | Kemmou L ,  Frontistis Z ,  Vakros J , et al.  Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: Factors affecting the activation and degradation processes[J]. Catalysis Today, 2018, 313, 128- 133. doi: 10.1016/j.cattod.2017.12.028
 | 
																													
																						| 39 | Ouyang Mengyun ,  Li Xiaoming ,  Xu Qiuxiang , et al.  Heterogeneous activation of persulfate by ag doped BiFeO3 composites for tetracycline degradation[J]. Journal of Colloid and Interface Science, 2020, 566, 33- 45. doi: 10.1016/j.jcis.2020.01.012
 | 
																													
																						| 40 | Samarghandi M R ,  Tari K ,  Shabanloo A , et al.  Synergistic degradation of acid blue 113 dye in a thermally activated persulfate(TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater[J]. Separation and Purification Technology, 2020, 247, 116931. doi: 10.1016/j.seppur.2020.116931
 | 
																													
																						| 41 | Song Yali ,  Huang Long ,  Zhang Xiaojing , et al.  Synergistic effect of persulfate and g-C3N4 under simulated solar light irradiation: Implication for the degradation of sulfamethoxazole[J]. Journal of Hazardous Materials, 2020, 393, 122379. doi: 10.1016/j.jhazmat.2020.122379
 | 
																													
																						| 42 | Sajjadi S ,  Khataee A ,  Bagheri N , et al.  Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nanocomposite under ultrasound irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 77, 280- 290. doi: 10.1016/j.jiec.2019.04.049
 | 
																													
																						| 43 | Kim C ,  Ahn J Y ,  Kim T Y , et al.  Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: Roles of redox mediation by dissolved Fe[J]. Journal of Hazardous Materials, 2020, 388, 121739. doi: 10.1016/j.jhazmat.2019.121739
 | 
																													
																						| 44 | Xu Yanyan ,  Wang Yan ,  Wan Jinquan , et al.  Reduced graphene oxide-supported metal organic framework as a synergistic catalyst for enhanced performance on persulfate induced degradation of trichlorophenol[J]. Chemosphere, 2020, 240, 124849. doi: 10.1016/j.chemosphere.2019.124849
 | 
																													
																						| 45 | Zhou Xinquan ,  Luo Chunguang ,  Luo Mengyi , et al.  Understanding the synergetic effect from foreign metals in bimetallic oxides for pms activation: A common strategy to increase the stoichiometric efficiency of oxidants[J]. Chemical Engineering Journal, 2020, 381, 122587. doi: 10.1016/j.cej.2019.122587
 | 
																													
																						| 46 | Takdastan A ,  Kakavandi B ,  Azizi M , et al.  Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/ US system: A new approach into catalytic degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 331, 729- 743. doi: 10.1016/j.cej.2017.09.021
 | 
																													
																						| 47 | Fu Yingying ,  Li Shengnan ,  Shi Yufei , et al.  Removal of artificial sweeteners using UV/persulfate: Radical-based degradation kinetic model in wastewater, pathways and toxicity[J]. Water Research, 2019, 167, 115102. doi: 10.1016/j.watres.2019.115102
 | 
																													
																						| 48 | Marjanovic M ,  Giannakis S ,  Grandjean D , et al.  Effect of um Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water[J]. Water Research, 2018, 140, 220- 231. doi: 10.1016/j.watres.2018.04.054
 | 
																													
																						| 49 | Lei Yongjia ,  Tian Yu ,  Sobhani Z , et al.  Synergistic degradation of pfas in water and soil by dual-frequency ultrasonic activated persulfate[J]. Chemical Engineering Journal, 2020, 388, 124215. doi: 10.1016/j.cej.2020.124215
 | 
																													
																						| 50 | Castilla-Acevedo S F ,  Betancourt-Buitrago L A ,  Dionysiou D D , et al.  Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes[J]. Journal of Hazardous Materials, 2020, 392, 122389. doi: 10.1016/j.jhazmat.2020.122389
 | 
																													
																						| 51 | Niu Lijun ,  Xian Guang ,  Long Zeqing , et al.  MnCeOx with high efficiency and stability for activating persulfate to degrade AO7 and ofloxacin[J]. Ecotoxicology and Environmental Safety, 2020, 191, 110228. doi: 10.1016/j.ecoenv.2020.110228
 | 
																													
																						| 52 | Lei Yang ,  Chen C S ,  Tu Y J , et al.  Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions[J]. Environmental Science & Technology, 2015, 49 (11): 6838- 6845. URL
 | 
																													
																						| 53 | Zhang Yunfei ,  Niu Junfeng ,  Xu Jianhui .  Fe(Ⅱ)-promoted activation of peroxymonosulfate by molybdenum disulfide for effective degradation of Acetaminophen[J]. Chemical Engineering Journal, 2020, 381, 122718. doi: 10.1016/j.cej.2019.122718
 | 
																													
																						| 54 | He Dongqin ,  Cheng Ying ,  Zeng Yifeng , et al.  Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: Theoretical and experimental studies[J]. Chemosphere, 2020, 240, 124979. doi: 10.1016/j.chemosphere.2019.124979
 | 
																													
																						| 55 | Dong Zhengyu ,  Zhang Qian ,  Chen B-Y , et al.  Oxidation of bisphenol a by persulfate via Fe3O4-alpha-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chemical Engineering Journal, 2019, 357, 337- 347. doi: 10.1016/j.cej.2018.09.179
 | 
																													
																						| 56 | Chen Meiqing ,  Wu Pingxiao ,  Zhu Nengwu , et al.  Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: Performance and metals synergy[J]. Chemical Engineering Journal, 2020, 392, 123709. doi: 10.1016/j.cej.2019.123709
 | 
																													
																						| 57 | Wang Minghua ,  Yang Longyu ,  Guo Chuanpan , et al.  Bimetallic Fe/ Ti-based metal-organic framework for persulfate-assisted visible light photocatalytic degradation of orange Ⅱ[J]. Chemistryselect, 2018, 3 (13): 3664- 3674. doi: 10.1002/slct.201703134
 | 
																													
																						| 58 | Xian Guang ,  Niu Lijun ,  Zhang Guangming , et al.  An efficient Cuogamma Fe2O3 composite activates persulfate for organic pollutants removal: Performance, advantages and mechanism[J]. Chemosphere, 2020, 242, 125191. doi: 10.1016/j.chemosphere.2019.125191
 | 
																													
																						| 59 | Chen Cheng ,  Liu Li ,  Guo Jing , et al.  Sulfur-doped copper-cobalt bimetallic oxides with abundant Cu(Ⅰ): A novel peroxymonosulfate activator for chloramphenicol degradation[J]. Chemical Engineering Journal, 2019, 361, 1304- 1316. doi: 10.1016/j.cej.2018.12.156
 | 
																													
																						| 60 | Gao Yuqiong ,  Gao Naiyun ,  Wang Wei , et al.  Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron(nZVI) for the propranolol degradation in water[J]. Ultrasonics Sonochemistry, 2018, 49, 33- 40. doi: 10.1016/j.ultsonch.2018.07.001
 | 
																													
																						| 61 | Zhang Tingting ,  Yang Yanling ,  Li Xing , et al.  Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239, 116537. doi: 10.1016/j.seppur.2020.116537
 | 
																													
																						| 62 | Xiao Sa ,  Cheng Min ,  Zhong Hua , et al.  Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384, 123625. URL
 | 
																													
																						| 63 | Pang Yixiong ,  Ruan Yang ,  Feng Yong , et al.  Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine-B degradation[J]. Chemosphere, 2019, 228, 412- 417. doi: 10.1016/j.chemosphere.2019.04.164
 | 
																													
																						| 64 | Khandarkhaeva M ,  Batoeva A ,  Sizykh M , et al.  Photo-fenton-like degradation of bisphenol A by persulfate and solar irradiation[J]. Journal of Environmental Management, 2019, 249, 109348. doi: 10.1016/j.jenvman.2019.109348
 | 
																													
																						| 65 | Asgari G ,  Shabanloo A ,  Salari M , et al.  Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network[J]. Environmental Research, 2020, 184, 109367. doi: 10.1016/j.envres.2020.109367
 | 
																													
																						| 66 | Badmus K O ,  Tijani J ,  Massima E , et al.  Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process[J]. Environmental Science and Pollution Research, 2018, 25 (8): 7299- 7314. doi: 10.1007/s11356-017-1171-z
 | 
																													
																						| 67 | Anipsitakis G P ,  Dionysiou D D .  Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B-Environmental, 2004, 54 (3): 155- 163. doi: 10.1016/j.apcatb.2004.05.025
 | 
																													
																						| 68 | Alexopoulou C ,  Petala A ,  Frontistis Z , et al.  Copper phosphide and persulfate salt: A novel catalytic system for the degradation of aqueous phase micro-contaminants[J]. Applied Catalysis B-Environmental, 2019, 244, 178- 187. doi: 10.1016/j.apcatb.2018.11.058
 | 
																													
																						| 69 | Liu Yangxian ,  Liu Ziyang ,  Wang Yan , et al.  Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system[J]. Journal of Hazardous Materials, 2018, 342, 326- 334. doi: 10.1016/j.jhazmat.2017.08.042
 | 
																													
																						| 70 | Aher A ,  Papp J ,  Colburn A , et al.  Naphthenic acids removal from high tds produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration[J]. Chemical Engineering Journal, 2017, 327, 573- 583. doi: 10.1016/j.cej.2017.06.128
 | 
																													
																						| 71 | Ma Zhifei ,  Yang Yu ,  Jiang Yonghai , et al.  Enhanced degradation of 2, 4-dinitrotoluene in groundwater by persulfate activated using iron-carbon micro-electrolysis[J]. Chemical Engineering Journal, 2017, 311, 183- 190. doi: 10.1016/j.cej.2016.11.083
 | 
																													
																						| 72 | Jiang Zhi ,  Zhao Jie ,  Li Chaofang , et al.  Strong synergistic effect of Co3O4 encapsulated in nitrogen-doped carbon nanotubes on the nonradical-dominated persulfate activation[J]. Carbon, 2020, 158, 172- 183. doi: 10.1016/j.carbon.2019.11.066
 | 
																													
																						| 73 | Sharfalddin A ,  Alzahrani E ,  Alamoudi M .  Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes[J]. Research on Chemical Intermediates, 2017, 43 (4): 2587- 2601. doi: 10.1007/s11164-016-2781-7
 | 
																													
																						| 74 | Grcic I ,  Papic S ,  Koprivanac N , et al.  Kinetic modeling and synergy quantification in sono and photooxidative treatment of simulated dyehouse effluent[J]. Water Research, 2012, 46 (17): 5683- 5695. doi: 10.1016/j.watres.2012.07.058
 | 
																													
																						| 75 | Chakma S ,  Praneeth S ,  Moholkar V S .  Mechanistic investigations in sono-hybrid (ultrasound/Fe2+/UVC) techniques of persulfate activation for degradation of azorubine[J]. Ultrasonics Sonochemistry, 2017, 38, 652- 663. doi: 10.1016/j.ultsonch.2016.08.015
 | 
																													
																						| 76 | Duan Xiaoguang ,  Indrawirawan S ,  Kang Jian , et al.  Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation[J]. Catalysis Today, 2019, 355, 319- 324. URL
 | 
																													
																						| 77 | Madhavan J ,  Panneerselvam S ,  Anandan S , et al.  Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment[J]. Chemosphere, 2010, 80 (7): 747- 752. doi: 10.1016/j.chemosphere.2010.05.018
 | 
																													
																						| 78 | Zeng Libin ,  Li Shiyu ,  Li Xinyong , et al.  Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchinlike MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study[J]. Chemical Engineering Journal, 2019, 378, 122039. doi: 10.1016/j.cej.2019.122039
 | 
																													
																						| 79 | Bahrami H ,  Eslami A ,  Nabizadeh R , et al.  Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology[J]. Journal of Cleaner Production, 2018, 198, 1210- 1218. doi: 10.1016/j.jclepro.2018.07.100
 | 
																													
																						| 80 | Monteagudo J M ,  Duran A ,  Gonzalez R , et al.  In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2[J]. Applied Catalysis B-Environmental, 2015, 176, 120- 129. URL
 | 
																													
																						| 81 | Frontistis Z .  Sonoelectrochemical degradation of propyl paraben: An examination of the synergy in different water matrices[J]. International Journal of Environmental Research and Public Health, 2020, 17 (8): 2621. doi: 10.3390/ijerph17082621
 | 
																													
																						| 82 | Hao Pulin ,  Hu Mingzhu ,  Xing Rong , et al.  Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation[J]. Journal of Alloys and Compounds, 2020, 823, 153757. doi: 10.1016/j.jallcom.2020.153757
 | 
																													
																						| 83 | Hu Limin ,  Wang Peng ,  Zhang Guangshan , et al.  Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation[J]. Chemical Engineering Journal, 2020, 383, 123140. doi: 10.1016/j.cej.2019.123140
 | 
																													
																						| 84 | Kang Jian ,  Zhang Huayang ,  Duan Xiaoguang , et al.  Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants[J]. Chemical Engineering Journal, 2019, 362, 251- 261. doi: 10.1016/j.cej.2019.01.035
 | 
																													
																						| 85 | Ding Han ,  Hu Jiangyong .  Degradation of ibuprofen by UVA-led/TiO2/persulfate process: Kinetics, mechanism, water matrix effects, intermediates and energy consumption[J]. Chemical Engineering Journal, 2020, 397, 125462. doi: 10.1016/j.cej.2020.125462
 | 
																													
																						| 86 | Zhang Tingting ,  Yang Yanling ,  Gao Jingfeng , et al.  Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment[J]. Separation and Purification Technology, 2020, 240, 116575. doi: 10.1016/j.seppur.2020.116575
 | 
																													
																						| 87 | Dong Lulu ,  Xu Tiefeng ,  Chen Wenxing , et al.  Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 357, 198- 208. doi: 10.1016/j.cej.2018.09.094
 | 
																													
																						| 88 | Liu Zhen ,  Zhao Chun ,  Wang Pu , et al.  Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study[J]. Chemical Engineering Journal, 2018, 343, 28- 36. doi: 10.1016/j.cej.2018.02.114
 | 
																													
																						| 89 | Xu Lu ,  Fu Borui ,  Sun Yan , et al.  Degradation of organic pollutants by Fe/N Co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application[J]. Chemical Engineering Journal, 2020, 400, 125870. doi: 10.1016/j.cej.2020.125870
 | 
																													
																						| 90 | Yang Lei ,  Bai Xue ,  Shi Juan , et al.  Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants[J]. Applied Catalysis B-Environmental, 2019, 256, 117759. doi: 10.1016/j.apcatb.2019.117759
 | 
																													
																						| 91 | Ozyildiz G ,  Olmez-Hanci T ,  Arslan-Alaton I .  Effect of nano-scale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process[J]. Applied Catalysis B-Environmental, 2019, 254, 135- 144. doi: 10.1016/j.apcatb.2019.04.092
 | 
																													
																						| 92 | Metheniti M E ,  Frontistis Z ,  Ribeiro R S , et al.  Degradation of propyl paraben by activated persulfate using iron-containing magnetic carbon xerogels: Investigation of water matrix and process synergy effects[J]. Environmental Science and Pollution Research, 2018, 25 (35): 34801- 34810. doi: 10.1007/s11356-017-0178-9
 | 
																													
																						| 93 | Frontistis Z .  Degradation of the nonsteroidal anti-inflammatory drug piroxicam by iron activated persulfate: The role of water matrix and ultrasound synergy[J]. International Journal of Environmental Research and Public Health, 2018, 15 (11): 2600. doi: 10.3390/ijerph15112600
 | 
																													
																						| 94 | Sisi A J ,  Fathinia M ,  Khataee A , et al.  Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis[J]. Journal of Molecular Liquids, 2020, 308, 113018. doi: 10.1016/j.molliq.2020.113018
 | 
																													
																						| 95 | Karimian S ,  Moussavi G ,  Fanaei F , et al.  Shedding light on the catalytic synergies between Fe(Ⅱ) and PMS in vacuum UV(VUV/Fe/ PMS) photoreactors for accelerated elimination of pharmaceuticals: The case of metformin[J]. Chemical Engineering Journal, 2020, 400, 125896. doi: 10.1016/j.cej.2020.125896
 | 
																													
																						| 96 | Cu Zhepei ,  Chen Weiming ,  Li Qibin , et al.  Kinetics study of dinitrodiazophenol industrial wastewater treatment by a microwave-coupled ferrous-activated persulfate process[J]. Chemosphere, 2019, 215, 82- 91. doi: 10.1016/j.chemosphere.2018.10.009
 | 
																													
																						| 97 | Chang Xinqiang ,  Lin Tao ,  Chen Wei , et al.  A new perspective of membrane fouling control by ultraviolet synergic ferrous iron catalytic persulfate〔UV/Fe(Ⅱ)/PS〕 as pretreatment prior to ultrafiltration[J]. Science of the Total Environment, 2020, 737, 139711. doi: 10.1016/j.scitotenv.2020.139711
 | 
																													
																						| 98 | Ghanbari F ,  Ahmadi M ,  Gohari F .  Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater[J]. Separation and Purification Technology, 2019, 228, 115732. doi: 10.1016/j.seppur.2019.115732
 |