1 |
王瑞,许婷婷,张逸飞. 絮凝剂在水处理中的应用与研究进展[J]. 节能与环保,2020(4):91-92. doi:10.3969/j.issn.1009-539X.2020.04.039
|
|
WANG Rui, XU Tingting, ZHANG Yifei. Application and research progress of flocculant in water treatment[J]. Energy Conservation & Environmental,2020(4):91-92. doi:10.3969/j.issn.1009-539X.2020.04.039
|
2 |
蒲磊. 巨大芽孢杆菌多糖型絮凝剂的纯化、结构鉴定和絮凝活性的研究[D]. 广州:华南理工大学,2020.
|
|
PU Lei. Purification,structural characterization and flocculation activity of polysaccharide-based bioflocculants from Bacillus megaterium [D]. Guangzhou:South China University of Technology,2020.
|
3 |
EXON J H. A review of the toxicology of acrylamide[J]. Journal of Toxicology and Environmental Health. Part B,Critical Reviews,2006,9(5):397-412. doi:10.1080/10937400600681430
|
4 |
SALEHIZADEH H, SHOJAOSADATI S A. Extracellular biopolymeric flocculants:Recent trends and biotechnological importance[J]. Biotechnology Advances,2001,19(5):371-385. doi:10.1016/s0734-9750(01)00071-4
|
5 |
杜凤龄,徐敏,王刚,等. 絮凝剂处理重金属废水的研究进展[J].工业水处理,2014,34(12):12-16. doi:10.11894/1005-829x.2014.34(12).012
|
|
DU Fengling, XU Ming, WANG Gang,et al. Research progress in flocculants applied to the treatment of wastewater containing heavy metals[J]. Industrial Water Treatment,2014,34(12):12-16. doi:10.11894/1005-829x.2014.34(12).012
|
6 |
李剑锋. 微生物净化技术在染料废水中的应用分析[J]. 环境与发展,2020,32(3):92-93.
|
|
LI Jianfeng. Application analysis of microorganism purification technology in dye waste water[J]. Environment and Development,2020,32(3):92-93.
|
7 |
张颖,聂云.绿色絮凝剂产生菌的分离及处理啤酒废水研究[J].工业水处理,2017,37(4):29-32. doi:10.11894/1005-829x.2017.37(4).007
|
|
ZHANG Ying, NIE Yun. Research on the separation of green flocculant produced strains and the treatment of brewery wastewater[J]. Industrial Water Treatment,2017,37(4):29-32. doi:10.11894/1005-829x.2017.37(4).007
|
8 |
孙学哲,刘圣鹏,姚刚,等.一株产絮凝剂菌株K8及其絮凝特性研究[J].工业水处理,2018,38(4):41-45. doi:10.11894/1005-829x.2018.38(4).041
|
|
SUN Xuezhe, LIU Shengpeng, YAO Gang,et al. Research on a flocculant-producing strain K8 and its characteristics of flocculation[J]. Industrial Water Treatment,2018,38(4):41-45. doi:10.11894/1005-829x.2018.38(4).041
|
9 |
LI Weihua, LIU Mengjie, SIDDIQUE M S,et al. Contribution of bacterial extracellular polymeric substances(EPS) in surface water purification[J]. Environmental Pollution,2021,280:116998. doi:10.1016/j.envpol.2021.116998
|
10 |
WANG Yunxiao, JIANG Li, SHANG Hongguo,et al. Treatment of azo dye wastewater by the self-flocculating marine bacterium Aliiglaciecola lipolytica [J]. Environmental Technology & Innovation,2020,19:100810. doi:10.1016/j.eti.2020.100810
|
11 |
HE Jiawen, DING Wanqing, HAN Wei,et al. A bacterial strain Citrobacter W4 facilitates the bio-flocculation of wastewater cultured microalgae Chlorella pyrenoidosa [J]. Science of the Total Environment,2022,806:151336. doi:10.1016/j.scitotenv.2021.151336
|
12 |
HUA Jingqiu, ZHANG Rui, CHEN Rongping,et al. Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp. and the interaction mechanism towards heavy metals[J]. Chemosphere,2021,267:129324. doi:10.1016/j.chemosphere.2020.129324
|
13 |
XIA Xiang, LAN Shuhuan, LI Xudong,et al. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment[J]. Chemosphere,2018,206:701-708. doi:10.1016/j.chemosphere.2018.04.159
|
14 |
JOSHI N, DHOLAKIYA R N, KUMAR M A,et al. Recycling of starch processing industrial wastewater as a sole nutrient source for the bioflocculant production[J]. Environmental Progress & Sustainable Energy,2017,36(5):1458-1465 . doi:10.1002/ep.12608
|
15 |
SAJAYAN A, KIRAN G S, PRIYADHARSHINI S,et al. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay[J]. Environmental Pollution,2017,228:118-127. doi:10.1016/j.envpol.2017.05.020
|
16 |
PU Lei, ZENG Yingjie, XU Pei,et al. Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment[J]. International Journal of Biological Macromolecules,2020,162:374-384. doi:10.1016/j.ijbiomac.2020.06.167
|
17 |
DING Rui, LUO Laipeng, HAN Ruixiang,et al. Rapid production of a novel Al(Ⅲ) dependent bioflocculant isolated from Raoultella ornithinolytica 160-1 and its application combined with inorganic salts[J]. Frontiers in Microbiology,2021,11:622365. doi:10.3389/fmicb.2020.622365
|
18 |
ZHONG Chunying, SUN Su, ZHANG Dajie,et al. Production of a bioflocculant from ramie biodegumming wastewater using a biomass-degrading strain and its application in the treatment of pulping wastewater[J]. Chemosphere,2020,253:126727. doi:10.1016/j.chemosphere.2020.126727
|
19 |
LI Ningjie, LAN Qi, WU Jinghang,et al. Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment[J]. Science of the Total Environment,2021,780:146662. doi:10.1016/j.scitotenv.2021.146662
|
20 |
NIE Yong, WANG Zimin, ZHANG Rui,et al. Aspergillus oryzae,a novel eco-friendly fungal bioflocculant for turbid drinking water treatment[J]. Separation and Purification Technology,2021,279:119669. doi:10.1016/j.seppur.2021.119669
|
21 |
WANG Junjun, CHEN Ran, FAN Ling,et al. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions[J]. Separation and Purification Technology,2021,268:118689. doi:10.1016/j.seppur.2021.118689
|
22 |
VIMALA R T V, ESCALINE J L, SIVARAMAKRISHNAN S. Characterization of self-assembled bioflocculant from the microbial consortium and its applications[J]. Journal of Environmental Management,2020,258:110000. doi:10.1016/j.jenvman.2019.110000
|
23 |
SIVASANKAR P, POONGODI S, LOBO A O,et al. Characterization of a novel polymeric bioflocculant from marine actinobacterium Streptomyces sp. and its application in recovery of microalgae[J]. International Biodeterioration & Biodegradation,2020,148:104883. doi:10.1016/j.ibiod.2020.104883
|
24 |
RAJIVGANDHI G, GNANAMANGAI B M, RAMACHANDRAN G,et al. Effective removal of heavy metals in industrial wastewater with novel bioactive catalyst enabling hybrid approach[J]. Environmental Research,2022,204:112337. doi:10.1016/j.envres.2021.112337
|
25 |
RAJIVGANDHI G, VIMALA R T V, MARUTHUPANDY M,et al. Enlightening the characteristics of bioflocculant of endophytic actinomycetes from marine algae and its biosorption of heavy metal removal[J]. Environmental Research,2021,200:111708. doi:10.1016/j.envres.2021.111708
|
26 |
MALIK S, KHAN F, ATTA Z,et al. Microalgal flocculation:Global research progress and prospects for algal biorefinery[J]. Biotechnology and Applied Biochemistry,2020,67(1):52-60. doi:10.1002/bab.1828
|
27 |
DÍAZ-SANTOS E, VILA M, DE LA VEGA M,et al. Study of bioflocculation induced by Saccharomyces bayanus var. uvarum and flocculating protein factors in microalgae[J]. Algal Research,2015,8:23-29. doi:10.1016/j.algal.2014.12.013
|
28 |
杨朝晖,龚家宽,曾光明,等. 基于饱和沉淀Ca(DBS)2及结合MBFGA1絮凝沉降去除罗丹明B[J]. 湖南大学学报:自然科学版,2018,45(12):149-156.
|
|
YANG Zhaohui, GONG Jiakuan, ZENG Guangming,et al. Removing Rhodamine B based on enhanced precipitation of calcium dodecyl benzene sulfonate combined with microbial flocculation GA1[J]. Journal of Hunan University:Natural Sciences,2018,45(12):149-156.
|
29 |
母哲轩,王华林,孙敏,等. 微生物絮凝剂絮凝条件的响应曲面法优化[J]. 环境化学,2010,29(2):241-245.
|
|
MU Zhexuan, WANG Hualin, SUN Min,et al. Optimization of flocculating conditions of microbial flocculant using response surface methodology[J]. Environmental Chemistry,2010,29(2):241-245.
|
30 |
KARTHIGA D K, NATARAJAN K A. Isolation and characterization of toxic metal removing bacterial bioflocculants[J]. Advanced Materials Research,2015,1130:585-588. doi:10.4028/www.scientific.net/amr.1130.585
|
31 |
吴鹏,张锐,范欣竹,等. 微生物絮凝剂提取方法的优化及其对废水中木质纤维类污染物的絮凝机理[J]. 环境工程学报,2022,16(1):343-354. doi:10.12030/j.cjee.202103172
|
|
WU Peng, ZHANG Rui, FAN Xinzhu,et al. Optimization of the extraction method of the bioflocculant and its application in lignocellulosic waste-containing water[J]. Chinese Journal of Environmental Engineering,2022,16(1):343-354,. doi:10.12030/j.cjee.202103172
|
32 |
JEBUN N, ALAM A Z, MAMUM A A,et al. Novel myco-coagulant produced by Lentinus squarrosulus for removal of water turbidity:Fungal identification and flocculant characterization[J]. Journal of Fungi,2022,8(2):192. doi:10.3390/jof8020192
|
33 |
穆军,蒋广宁,陈荫. 一种从菲律宾蛤仔黏附细菌Halomonas sp. GHF11中提取的多糖絮凝剂的表征其在脱色中的应用[J]. 浙江海洋大学学报:自然科学版,2021,40(1):52-58
|
|
MU Jun, JIANG Guangning, CHEN Yin. Characterization of a novel polysaccharide flocculant extracted from Manila adhesive bacterium Halomonas sp. GHF11 and its application in decolorization[J]. Journal of Zhejiang Ocean University:Natural Science,2021,40(1):52-58.
|
34 |
杨志超,滕青,祝瑄,等. 多糖微生物絮凝剂对方解石与闪锌矿的絮凝作用及机理[J]. 金属矿山,2021(10):108-113.
|
|
YANG Zhichao, TENG Qing, ZHU Xuan,et al. Role and mechanism of polysaccharide-based microbial flocculant in flocculation calcite and sphalerite[J]. Metal Mine,2021(10):108-113.
|
35 |
MORE T T, YADAV J S S, YAN S,et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management,2014,144:1-25. doi:10.1016/j.jenvman.2014.05.010
|
36 |
WANG Zhi, SHEN Liang, ZHUANG Xiaoling,et al. Flocculation characterization of a bioflocculant from Bacillus licheniformis [J]. Industrial & Engineering Chemistry Research,2015,54(11):2894-2901 . doi:10.1021/ie5050204
|
37 |
LI Meng, WANG Yulong, HOU Xiaobang,et al. DMC-grafted cellulose as green-based flocculants for agglomerating fine kaolin particles[J]. Green Energy & Environment,2018,3(2):138-146. doi:10.1016/j.gee.2017.11.005
|
38 |
ZENG Tao, HU Xueqin, WU Hao,et al. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan[J]. International Journal of Biological Macromolecules,2019,131:760-768. doi:10.1016/j.ijbiomac.2019.03.116
|
39 |
YANG Zhen, YUAN Bo, HUANG Xin,et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide,a novel amphoteric chemically bonded composite flocculant[J]. Water Research,2012,46(1):107-114. doi:10.1016/j.watres.2011.10.024
|
40 |
MOHAMMED J N, WAN DAGANG W R Z. Implications for industrial application of bioflocculant demand alternatives to conventional media:Waste as a substitute[J]. Water Science Technology,2019,80(10):1807-1822. doi:10.2166/wst.2020.025
|
41 |
YANG Ran, LI Haijiang, HUANG Mu,et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research,2016,95:59-89. doi:10.1016/j.watres.2016.02.068
|
42 |
RUNKANA V, SOMASUNDARAN P, KAPUR P C. A population balance model for flocculation of colloidal suspensions by polymer bridging[J]. Chemical Engineering Science,2006,61(1):182-191. doi:10.1016/j.ces.2005.01.046
|
43 |
YANG Zhen, REN Kexin, GUIBAL E,et al. Removal of trace nonylphenol from water in the coexistence of suspended inorganic particles and NOMs by using a cellulose-based flocculant[J]. Chemosphere,2016,161:482-490. doi:10.1016/j.chemosphere.2016.07.036
|
44 |
ZHAO Changqing, YANG Qinhuan, ZHANG Hao. Optimization of microbial flocculant-producing medium for Bacillus subtilis [J]. Indian Journal of Microbiology,2017,57(1):83-91. doi:10.1007/s12088-016-0631-3
|
45 |
RASULOV B A, LI Li, LIU Yonghong,et al. Production,characterization and structural modification of exopolysaccharide-based bioflocculant by Rhizobium radiobacter SZ4S7S14 and media optimization[J]. 3 Biotech,2017,7(3):179. doi:10.1007/s13205-017-0811-9
|
46 |
LI Ou, LU Cui, LIU Ao,et al. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment[J]. Bioresource Technology,2013,134:87-93. doi:10.1016/j.biortech.2013.02.013
|
47 |
ALJUBOORI A H R, IDRIS A, ABDULLAH N,et al. Production and characterization of a bioflocculant produced by Aspergillus flavus [J]. Bioresource Technology,2013,127:489-493. doi:10.1016/j.biortech.2012.09.016
|
48 |
AJAO V, MILLAH S, GAGLIANO M C,et al. Valorization of glycerol/ethanol-rich wastewater to bioflocculants:Recovery,properties,and performance[J]. Journal of Hazardous Materials,2019,375:273-280. doi:10.1016/j.jhazmat.2019.05.009
|
49 |
LIU Weijie, ZHAO Chenchu, JIANG Jihong,et al. Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae[J]. Biotechnology for Biofuels,2015,8:170. doi:10.1186/s13068-015-0354-4
|
50 |
PU Shengyan, QIN Lanlan, CHE Junping,et al. Preparation and application of a novel bioflocculant by two strains of Rhizopus sp. using potato starch wastewater as nutrilite[J]. Bioresource Technology,2014,162:184-191. doi:10.1016/j.biortech.2014.03.124
|
51 |
ZHANG Zhiqiang, LIN Bo, XIA Siqing,et al. Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source[J]. Journal of Environmental Sciences,2007,19(6):667-673. doi:10.1016/s1001-0742(07)60112-0
|
52 |
WANG Shuguang, GONG Wenxin, LIU Xianwei,et al. Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater[J]. Biochemical Engineering Journal,2007,36(2):81-86. doi:10.1016/j.bej.2007.02.003
|
53 |
GUO Junyuan, CHEN Cheng. Removal of arsenite by a microbial bioflocculant produced from swine wastewater[J]. Chemosphere,2017,181:759-766. doi:10.1016/j.chemosphere.2017.04.119
|
54 |
PARTHIBA KARTHIKEYAN O, TRABLY E, MEHARIYA S,et al. Pretreatment of food waste for methane and hydrogen recovery:A review[J]. Bioresource Technology,2018,249:1025-1039. doi:10.1016/j.biortech.2017.09.105
|
55 |
PENG Lanyan, YANG Chunping, ZENG Guangming,et al. Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media[J]. Applied Microbiology and Biotechnology,2014,98(15):6847-6858. doi:10.1007/s00253-014-5725-4
|
56 |
LIU Weijie, DONG Zhen, SUN Di,et al. Production of bioflocculant using feather waste as nitrogen source and its use in recycling of straw ash-washing wastewater with low-density and high pH property[J]. Chemosphere,2020,252:126495. doi:10.1016/j.chemosphere.2020.126495
|
57 |
MOHAMMED J N, WAN DAGANG W R Z. Development of a new culture medium for bioflocculant production using chicken viscera[J]. MethodsX,2019,6:1467-1472. doi:10.1016/j.mex.2019.06.002
|
58 |
NWODO U U, GREEN E, MABINYA L V,et al. Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model[J]. Colloids and Surfaces B:Biointerfaces,2014,116:257-264. doi:10.1016/j.colsurfb.2014.01.008
|
59 |
CHEN Zhen, LIU Peize, LI Zhipeng,et al. Identification of key genes involved in polysaccharide bioflocculant synthesis in Bacillus licheniformis [J]. Biotechnology and Bioengineering,2017,114(3):645-655. doi:10.1002/bit.26189
|
60 |
VORHÖLTER F J, SCHNEIKER S, GOESMANN A,et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis[J]. Journal of Biotechnology,2008,134(1/2):33-45. doi:10.1016/j.jbiotec.2007.12.013
|
61 |
WIBBERG D, ALKHATEEB R S, WINKLER A,et al. Draft genome of the xanthan producer Xanthomonas campestris NRRL B-1459(ATCC 13951)[J]. Journal of Biotechnology,2015,204:45-46. doi:10.1016/j.jbiotec.2015.03.026
|
62 |
SUN Xiaqing, ZHANG Jianfa. Bacterial exopolysaccharides:Chemical structures,gene clusters and genetic engineering[J]. International Journal of Biological Macromolecules,2021,173:481-490. doi:10.1016/j.ijbiomac.2021.01.139
|
63 |
SENGUPTA D, DATTA S, BISWAS D. Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters[J]. Applied Microbiology and Biotechnology,2018,102(4):1587-1598. doi:10.1007/s00253-018-8745-7
|
64 |
HUANG Haidong, LI Xiaoyan, WU Mengmeng,et al. Cloning,expression and characterization of a phosphoglucomutase/phosphomannomutase from sphingan-producing Sphingomonas sanxanigenens [J]. Biotechnology Letters,2013,35(8):1265-1270. doi:10.1007/s10529-013-1193-7
|
65 |
LI Nan, WANG Yuanlong, ZHU Ping,et al. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene[J]. Microbiological Research,2015,171:73-77. doi:10.1016/j.micres.2014.12.006
|
66 |
POLLOCK T J, MIKOLAJCZAK M, YAMAZAKI M,et al. Production of xanthan gum by Sphingomonas bacteria carrying genes from Xanthomonas campestris [J]. Journal of Industrial Microbiology and Biotechnology,1997,19(2):92-97. doi:10.1038/sj.jim.2900449
|
67 |
GAYTÁN I, PEÑA C, NÚÑEZ C,et al. Azotobacter vinelandii lacking the Na+-NQR activity:A potential source for producing alginates with improved properties and at high yield[J]. World Journal of Microbiology & Biotechnology,2012,28(8):2731-2740. doi:10.1007/s11274-012-1084-4
|
68 |
WU Mengmeng, SHI Zhong, TIAN Xuefeng,et al. Enhancement of transparent hydrogel sanxan production in Sphingomonas sanxanigenens NX02 via rational and random gene manipulation[J]. Carbohydrate Polymers,2018,189:210-217. doi:10.1016/j.carbpol.2018.02.027
|
69 |
GALVÁN E M, IELMINI M V, PATEL Y N,et al. Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB [J]. Glycobiology,2012,23(2):259-272. doi:10.1093/glycob/cws146
|
70 |
ZHAI Zhengyuan, XIE Shuxin, ZHANG Hongxing,et al. Homologous over-expression of chain length determination protein EpsC increases the molecular weight of exopolysaccharide in Streptococcus thermophilus 05-34[J]. Frontiers in Microbiology,2021,12:696222. doi:10.3389/fmicb.2021.696222
|
71 |
XU Linxiang, CHENG Rui, LI Jing,et al. Identification of substituent groups and related genes involved in salecan biosynthesis in Agrobacterium sp. ZX09[J]. Applied Microbiology and Biotechnology,2017,101(2):585-598. doi:10.1007/s00253-016-7814-z
|
72 |
SALEHIZADEH H, YAN Ning, FARNOOD R. Recent advances in polysaccharide bio-based flocculants[J]. Biotechnology Advances,2018,36(1):92-119. doi:10.1016/j.biotechadv.2017.10.002
|
73 |
DAS S, PATRA P, SINGHA K,et al. Graft copolymeric flocculant using functionalized starch towards treatment of blast furnace effluent[J]. International Journal of Biological Macromolecules,2019,125:35-40. doi:10.1016/j.ijbiomac.2018.12.026
|
74 |
SUN Yongjun, ZHU Chengyu, SUN Wenquan,et al. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water[J]. Carbohydrate Polymers,2017,164:222-232. doi:10.1016/j.carbpol.2017.02.010
|
75 |
CHENG Dehong, LIN Jie, LU Sheng,et al. Flocculation of quaternary chitosan on acid dyeing waste water[J]. Advanced Materials Research,2013,821/822:531-534. doi:10.4028/www.scientific.net/amr.821-822.531
|
76 |
LI Xiang, ZHENG Huaili, WANG Yili,et al. Fabricating an enhanced sterilization chitosan-based flocculants:Synthesis,characterization,evaluation of sterilization and flocculation[J]. Chemical Engineering Journal,2017,319:119-130. doi:10.1016/j.cej.2017.02.147
|
77 |
TANG Xiaomin, HUANG Jing, ZHANG Shixin,et al. Comparison of two cationic chitosan-based flocculants prepared by photocatalysis and photoinitiation systems:Synthesis mechanism,structure and performance in water treatment[J]. Separation and Purification Technology,2021,279:119670. doi:10.1016/j.seppur.2021.119670
|
78 |
肖雪峰,孙永军,沈浩,等. CSC-P(AM-AA)重金属捕集絮凝剂的光谱表征及其对重金属去除研究[J]. 光谱学与光谱分析,2018,38(6):1809-1813.
|
|
XIAO Xuefeng, SUN Yongjun, SHEN Hao,et al. Spectral characterizations of CSC-P(AM-AA)with function of trapping heavy metals and its removal efficiency of Cu2+ [J]. Spectroscopy and Spectral Analysis,2018,38(6):1809-1813.
|
79 |
TANG Xiaomin, HUANG Ting, ZHANG Shixin,et al. The role of sulfonated chitosan-based flocculant in the treatment of hematite wastewater containing heavy metals[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,585:124070. doi:10.1016/j.colsurfa.2019.124070
|
80 |
LIU Lihua, LI Yanhong, LIU Xing,et al. Chelating stability of an amphoteric chelating polymer flocculant with Cu(Ⅱ),Pb(Ⅱ),Cd(Ⅱ),and Ni(Ⅱ)[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,118:765-775. doi:10.1016/j.saa.2013.09.066
|
81 |
SUN Yongjun, ZHOU Shengbao, SUN Wenquan,et al. Flocculation activity and evaluation of chitosan-based flocculant CMCTS-g-P(AM-CA) for heavy metal removal[J]. Separation and Purification Technology,2020,241:116737. doi:10.1016/j.seppur.2020.116737
|
82 |
ZHANG Chaofan, WANG Xiansheng, WANG Yao,et al. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting[J]. Applied Microbiology and Biotechnology,2016,100(12):5653-5660. doi:10.1007/s00253-016-7543-3
|
83 |
FERASAT Z, PANAHI R, MOKHTARANI B. Natural polymer matrix as safe flocculant to remove turbidity from kaolin suspension:Performance and governing mechanism[J]. Journal of Environmental Management,2020,255:109939. doi:10.1016/j.jenvman.2019.109939
|
84 |
DONG Jingshen, LIU Quanjun. Research on the coagulant aid effects of modified diatomite on coal microbial flocculation[J]. Water Science and Technology,2019,80(10):1893-1901. doi:10.2166/wst.2020.009
|
85 |
LUO Yuanxia, GAO Baoyu, WANG Jie,et al. Synchronous removal of CuO nanoparticles and Cu2+ by polyaluminum chloride-Enteromorpha polysaccharides:Effect of Al species and pH[J]. Journal of Environmental Sciences,2020,88:1-11. doi:10.1016/j.jes.2019.08.007
|
86 |
WU Dan, LI Ang, YANG Jixian,et al. N-3-oxo-octanoyl-homoserine lactone as a promotor to improve the microbial flocculant production by an exopolysaccharide bioflocculant-producing bacterium Agrobacterium tumefaciens F2[J]. RSC Advances,2015,5(109):89531-89538. doi:10.1039/c5ra15657b
|
87 |
YANG Jixian, WU Dan, LI Ang,et al. The addition of N-hexanoyl-homoserine lactone to improve the microbial flocculant production of Agrobacterium tumefaciens strain F2,an exopolysaccharide bioflocculant-producing bacterium[J]. Applied Biochemistry and Biotechnology,2016,179(5):728-739. doi:10.1007/s12010-016-2027-6
|
88 |
FENG Jing, YANG Zhaohui, ZENG Guangming,et al. The adsorption behavior and mechanism investigation of Pb(Ⅱ) removal by flocculation using microbial flocculant GA1[J]. Bioresource Technology,2013,148:414-421. doi:10.1016/j.biortech.2013.09.011
|
89 |
NOUHA K, KUMAR R S, TYAGI R D. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods[J]. Bioresource Technology,2016,212:120-129. doi:10.1016/j.biortech.2016.04.021
|
90 |
SOLÍS M, SOLÍS A, PÉREZ H I,et al. Microbial decolouration of azo dyes:A review[J]. Process Biochemistry,2012,47(12):1723-1748. doi:10.1016/j.procbio.2012.08.014
|
91 |
BUTHELEZI S P, OLANIRAN A O, PILLAY B. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates[J]. Molecules,2012,17(12):14260-14274. doi:10.3390/molecules171214260
|
92 |
KAUR R, ROY D, YELLAPU S K,et al. Enhanced composting leachate treatment using extracellular polymeric substances as bioflocculant[J]. Journal of Environmental Engineering,2019,145(11):04019075. doi:10.1061/(asce)ee.1943-7870.0001584
|
93 |
ZOU Xiao, SUN Jialong, LI Juan,et al. High flocculation of coal washing wastewater using a novel bioflocculant from Isaria cicadae GZU6722[J]. Polish Journal of Microbiology,2020,69(1):1-10. doi:10.33073/pjm-2020-008
|
94 |
ZHANG Yizhuo, YANG Qinhuan, GAO Hongxia,et al. Application of a modified biological flocculant in total nitrogen treatment of leather wastewater[J]. Water Science and Technology,2021,83(12):2901-2910. doi:10.2166/wst.2021.192
|
95 |
DAVID O M, OLUWOLE O A, AYODELE O E,et al. Characterisation of fungal bioflocculants and its application in water treatment[J]. Current Journal of Applied Science and Technology,2019:1-9. doi:10.9734/cjast/2019/v34i630159
|
96 |
FANG Di, SHI Cuicui. Characterization and flocculability of a novel proteoglycan produced by Talaromyces trachyspermus OU5[J]. Journal of Bioscience and Bioengineering,2016,121(1):52-56. doi:10.1016/j.jbiosc.2015.05.001
|