1 |
|
|
LIU Xingshe, LIU Yongjun, LIU Zhe,et al. Research progress on treatment methods of phenolic substances and ammonia nitrogen in coal chemical wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1):505-514. doi: 10.1080/21622515.2022.2148574
|
2 |
刘永军,刘喆. 煤化工废水无害化处理技术研究与应用[M]. 北京:化学工业出版社,2020:3-5.
|
3 |
DUTTA D, ARYA S, KUMAR S. Industrial wastewater treatment:Current trends,bottlenecks,and best practices[J]. Chemosphere, 2021, 285:131245. doi: 10.1016/j.chemosphere.2021.131245
|
4 |
SMAOUI Y, MLAIK N, BOUZID J,et al. Improvement of anaerobic digestion of landfill leachate by using coagulation-flocculation,Fenton’s oxidation and air stripping pretreatments[J]. Environmental Progress & Sustainable Energy, 2018, 37(3):1041-1049. doi: 10.1002/ep.12781
|
5 |
DOS SANTOS H A P, DE CASTILHOS JÚNIOR A B, NADALETI W C,et al. Ammonia recovery from air stripping process applied to landfill leachate treatment[J]. Environmental Science and Pollution Research, 2020, 27(36):45108-45120. doi: 10.1007/s11356-020-10397-9
|
6 |
YAO Yiqing, YU Liang, GHOGARE R,et al. Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration[J]. Energy, 2017, 141:179-188. doi: 10.1016/j.energy.2017.09.086
|
7 |
|
|
ZHANG Jiacheng, LIU Yongjun, LIU Pan,et al. Synergistic enhancement mechanism of nano-TiO 2/ZJ-01 composite promoter on the removal efficiency of high-concentration ammonia nitrogen[J]. China Environmental Science, 2022, 42(6):2628-2637. doi: 10.3969/j.issn.1000-6923.2022.06.016
|
8 |
QIANG Jiaxin, ZHOU Zhen, WANG Kaichong,et al. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment[J]. Water Research, 2020, 170:115280. doi: 10.1016/j.watres.2019.115280
|
9 |
LIU Pan, ZHANG Aining, LIU Yongjun,et al. Adsorption mechanism of high-concentration ammonium by Chinese natural zeolite with experimental optimization and theoretical computation[J]. Water, 2022, 14(15):2413. doi: 10.3390/w14152413
|
10 |
刘磐,刘永军,刘兴社,等. 天然沸石对高浓度NH4 +吸附机理研究[J]. 工业水处理, 2023,43(2):68-75.
|
|
LIU Pan, LIU Yongjun, LIU Xingshe,et al. Study on adsorption mechanism of natural zeolite to high concentration ammonium[J]. Industrial Water Treatment,2023,43(2):68-75.
|
11 |
ZHU Fang, MA Shaoyun, LIU Tao,et al. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater[J]. Journal of Cleaner Production, 2018, 174:184-190. doi: 10.1016/j.jclepro.2017.10.302
|
12 |
SHABAN M, SAYED M I, SHAHIEN M G,et al. Adsorption behavior of inorganic- and organic-modified kaolinite for Congo red dye from water,kinetic modeling,and equilibrium studies[J]. Journal of Sol-Gel Science and Technology, 2018, 87(2):427-441. doi: 10.1007/s10971-018-4719-6
|
13 |
SHABAN M, HASSOUNA M E M, NASIEF F M,et al. Adsorption properties of kaolinite-based nanocomposites for Fe and Mn pollutants from aqueous solutions and raw ground water:Kinetics and equilibrium studies[J]. Environmental Science and Pollution Research, 2017, 24(29):22954-22966. doi: 10.1007/s11356-017-9942-0
|
14 |
ABUKHADRA M R, MOSTAFA M. Effective decontamination of phosphate and ammonium utilizing novel muscovite/phillipsite composite;equilibrium investigation and realistic application[J]. Science of the Total Environment, 2019, 667:101-111. doi: 10.1016/j.scitotenv.2019.02.362
|
15 |
HAO Xiaofei, HU Hongjie, LI Zhen,et al. Adsorption properties of modified clinoptilolite for methane and nitrogen[J]. Materials, 2018, 11(10):2024. doi: 10.3390/ma11102024
|
16 |
BOURAIE M EL, MASOUD A A. Adsorption of phosphate ions from aqueous solution by modified bentonite with magnesium hydroxide Mg(OH) 2 [J]. Applied Clay Science, 2017, 140:157-164. doi: 10.1016/j.clay.2017.01.021
|
17 |
KHAN S A, IDREES M, BILAL M. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 623:126711. doi: 10.1016/j.colsurfa.2021.126711
|
18 |
JAMIESON H L, YIN Huidan, WALLER A,et al. Impact of acids on the structure and composition of Linde Type A zeolites for use in reverse osmosis membranes for recovery of urine-containing wastewaters[J]. Microporous and Mesoporous Materials, 2015, 201:50-60. doi: 10.1016/j.micromeso.2014.09.017
|
19 |
ATES A, AKGÜL G. Modification of natural zeolite with NaOH for removal of manganese in drinking water[J]. Powder Technology, 2016, 287:285-291. doi: 10.1016/j.powtec.2015.10.021
|
20 |
MUSCARELLA S M, BADALUCCO L, CANO B,et al. Ammonium adsorption,desorption and recovery by acid and alkaline treated zeolite[J]. Bioresource Technology, 2021, 341:125812. doi: 10.1016/j.biortech.2021.125812
|
21 |
GÓMEZ-HORTIGÜELA L, PINAR A B, PÉREZ-PARIENTE J,et al. Ion-exchange in natural zeolite stilbite and significance in defluoridation ability[J]. Microporous and Mesoporous Materials, 2014, 193:93-102. doi: 10.1016/j.micromeso.2014.03.014
|
22 |
VALDÉS H, RIQUELME A L, SOLAR V A,et al. Removal of chlorinated volatile organic compounds onto natural and Cu-modified zeolite:The role of chemical surface characteristics in the adsorption mechanism[J]. Separation and Purification Technology, 2021, 258:118080. doi: 10.1016/j.seppur.2020.118080
|
23 |
|
|
ZHAO Haodi, SHANGGUAN Yufei, YU Shuili. Removal of cesium and strontium from water by an integrated device of adsorption-microfiltration using modified permutate as adsorbent[J]. Industrial Water Treatment, 2022, 42(1):92-99. doi: 10.19965/j.cnki.iwt.2021-0566
|
24 |
ZHANG Wei, ZHOU Zhen, AN Ying,et al. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant[J]. Chemosphere, 2017, 178:565-572. doi: 10.1016/j.chemosphere.2017.03.091
|
25 |
CASTRO C J, SHYU H Y, XABA L,et al. Performance and onsite regeneration of natural zeolite for ammonium removal in a field-scale non-sewered sanitation system[J]. Science of the Total Environment, 2021, 776:145938. doi: 10.1016/j.scitotenv.2021.145938
|
26 |
YOU Xialei, VALDERRAMA C, QUEROL X,et al. Recovery of ammonium by powder synthetic zeolites from wastewater effluents:Optimization of the regeneration step[J]. Water,Air,& Soil Pollution, 2017, 228(10):396. doi: 10.1007/s11270-017-3577-0
|
27 |
HAN Zhenfeng, DONG Jing, SHEN Zhiqiang,et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in situ biological regeneration of zeolite[J]. Chemosphere, 2019, 217:364-373. doi: 10.1016/j.chemosphere.2018.11.036
|
28 |
MONTALVO S, HUILIÑIR C, BORJA R,et al. Application of zeolites for biological treatment processes of solid wastes and wastewaters:A review[J]. Bioresource Technology, 2020, 301:122808. doi: 10.1016/j.biortech.2020.122808
|
29 |
CHEN Jing, WANG Xiaojun, ZHOU Songwei,et al. Effect of alkalinity on bio-zeolite regeneration in treating cold low-strength ammonium wastewater via adsorption and enhanced regeneration[J]. Environmental Science and Pollution Research, 2019, 26(27):28040-28051. doi: 10.1007/s11356-019-06034-9
|
30 |
DING Jing, ZHAO Qingliang, ZHANG Jun,et al. Hybrid electrooxidation and adsorption process for the removal of ammonia in low concentration chloride wastewater[J]. Environmental Science and Pollution Research, 2017, 24(6):5098-5105. doi: 10.1007/s11356-015-5793-8
|
31 |
JAIN A, KUMARI S, AGARWAL S,et al. Water purification via novel nano-adsorbents and their regeneration strategies[J]. Process Safety and Environmental Protection, 2021, 152:441-454. doi: 10.1016/j.psep.2021.06.031
|
32 |
ZHANG Wei, ZHOU Zhen, AN Ying,et al. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant[J]. Chemosphere, 2017, 178:565-572. doi: 10.1016/j.chemosphere.2017.03.091
|
33 |
LIU Jiaqi, CHENG Xiang, ZHANG Yili,et al. Zeolite modification for adsorptive removal of nitrite from aqueous solutions[J]. Microporous and Mesoporous Materials, 2017, 252:179-187. doi: 10.1016/j.micromeso.2017.06.029
|
34 |
YUE Xiaodi, KOH Y K K, NG H Y. Membrane fouling mitigation by NaClO-assisted backwash in anaerobic ceramic membrane bioreactors for the treatment of domestic wastewater[J]. Bioresource Technology, 2018, 268:622-632. doi: 10.1016/j.biortech.2018.08.003
|
35 |
LUO Wuhui, OUYANG Jiping, ANTWI P,et al. Microwave/ultrasound-assisted modification of montmorillonite by conventional and gemini alkyl quaternary ammonium salts for adsorption of chromate and phenol:Structure-function relationship[J]. Science of the Total Environment, 2019, 655:1104-1112. doi: 10.1016/j.scitotenv.2018.11.329
|
36 |
KHALIL A, SERGEEVICH N, BORISOVA V. Removal of ammonium from fish farms by biochar obtained from rice straw:Isotherm and kinetic studies for ammonium adsorption[J]. Adsorption Science & Technology, 2018, 36(5/6):1294-1309. doi: 10.1177/0263617418768944
|
37 |
CHENG Houming, ZHU Qi, XING Zipeng. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite[J]. Journal of Cleaner Production, 2019, 233:720-730. doi: 10.1016/j.jclepro.2019.06.079
|
38 |
INT C. Adsorption of Cu(Ⅱ),Ni(Ⅱ) and Zn(Ⅱ) ions by nano kaolinite:Thermodynamics and kinetics studies[J]. Chemistry International,2019,6(4):168-178.
|
39 |
AWWAD A M, AMER M W, AL-AQARBEH M M. TiO2-Kaolinite nanocomposite prepared from the Jordanian Kaolin clay:Adsorption and thermodynamics of Pb(Ⅱ) and Cd(Ⅱ) ions in aqueous solution[J]. Chemistry International,2019,6(4):168-178.
|
40 |
INT C, IQBAL M. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring:A review[J]. Chemistry International,2019,5(1):1-80.
|
41 |
LIMA E C, HOSSEINI-BANDEGHARAEI A, MORENO-PIRAJÁN J C,et al. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption[J]. Journal of Molecular Liquids, 2019, 273:425-434. doi: 10.1016/j.molliq.2018.10.048
|
42 |
SHABAN M, ABUKHADRA M R, SHAHIEN M G,et al. Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes[J]. Environmental Chemistry Letters, 2018, 16(1):275-280. doi: 10.1007/s10311-017-0658-7
|
43 |
MOUSAVI H, DARIAN J, MOKHTARANI B. Enhanced nitrogen adsorption capacity on Ca 2+ ion-exchanged hierarchical X zeolite[J]. Separation and Purification Technology, 2021, 264:118442. doi: 10.1016/j.seppur.2021.118442
|
44 |
马凯歌. “吹脱+吸附”工艺对煤化工废水中氨氮的除脱效果试验研究[D]. 西安:西安建筑科技大学,2021.
|
|
MA Kaige. Experimental study on the effect of “blowing off + adsorption”process on ammonia nitrogen removal from coal chemical wastewater[D]. Xi’an:Xi’an University of Architecture and Technology,2021.
|
45 |
HUANG Haiming, YANG Liping, XUE Qiang,et al. Removal of ammonium from swine wastewater by zeolite combined with chlorination for regeneration[J]. Journal of Environmental Management, 2015, 160:333-341. doi: 10.1016/j.jenvman.2015.06.039
|
46 |
ZHI Suli, TIAN Liang, LI Nan,et al. A novel system of MnO 2-mullite-cordierite composite particle with NaClO for Methylene blue decolorization[J]. Journal of Environmental Management, 2018, 213:392-399. doi: 10.1016/j.jenvman.2018.02.082
|