1 |
张海兵,周亚松,郭绍辉,等. 高级氧化技术处理苯胺废水应用进展[J]. 工业水处理,2021,41(6):167-172. doi:10.11894/iwt.2020-0641
|
|
ZHANG Haibing, ZHOU Yasong, GUO Shaohui,et al. Advances of advanced oxidation process to treat aniline wastewater[J]. Industrial Water Treatment,2021,41(6):167-172. doi:10.11894/iwt.2020-0641
|
2 |
王德欣. 外源强化厌氧处理费托合成废水的效能研究[D]. 哈尔滨:哈尔滨工业大学,2018. doi:10.1016/j.biortech.2018.02.084
|
|
WANG Dexin. Research on enhanced anaerobic treatment of Fischer-Tropsch wastewater with the assistance of exogenous source[D]. Harbin:Harbin Institute of Technology,2018. doi:10.1016/j.biortech.2018.02.084
|
3 |
田帅,朱易春,黄书昌,等. 厌氧生物处理低浓度污水研究进展[J]. 化工进展,2021,40(4):2338-2346.
|
|
TIAN Shuai, ZHU Yichun, HUANG Shuchang,et al. Research progress in anaerobic biological treatment of low-strength sewage[J]. Chemical Industry and Engineering Progress,2021,40(4):2338-2346.
|
4 |
LOVLEY D R. Live wires:Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination[J]. Energy & Environmental Science,2011,4(12):4896. doi:10.1039/c1ee02229f
|
5 |
吴明山,马建锋,杨淑敏,等. 磁性生物炭复合材料研究进展[J]. 功能材料,2016,47(7):7028-7033. doi:10.3969/j.issn.1001-9731.2016.07.006
|
|
WU Mingshan, MA Jianfeng, YANG Shumin,et al. Progress of the magnetic biochar composite materials[J]. Journal of Functional Materials,2016,47(7):7028-7033. doi:10.3969/j.issn.1001-9731.2016.07.006
|
6 |
PEREIRA L, DIAS P, SOARES O S G P,et al. Synthesis,characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10[J]. Applied Catalysis B:Environmental,2017,212:175-184. doi:10.1016/j.apcatb.2017.04.060
|
7 |
LI Lingli, TONG Zhonghua, FANG Caiyun,et al. Response of anaerobic granular sludge to single-wall carbon nanotube exposure[J]. Water Research,2015,70:1-8. doi:10.1016/j.watres.2014.11.042
|
8 |
ZHANG Jishi, FAN Chuanfang, ZHAO Wenqian,et al. Improving bio-H2 production by manganese doped magnetic carbon[J]. International Journal of Hydrogen Energy,2019,44(49):26920-26932. doi:10.1016/j.ijhydene.2019.08.148
|
9 |
ZHANG Min, LI Jianhua, WANG Yuncai. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge[J]. Environmental Science and Pollution Research International,2019,26(10):10292-10305. doi:10.1007/s11356-019-04479-6
|
10 |
KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via(semi)conductive iron-oxide minerals[J]. Environmental Microbiology,2012,14(7):1646-1654. doi:10.1111/j.1462-2920.2011.02611.x
|
11 |
ZHANG Mingyuan, MA Yunqian, JI Dandan,et al. Synergetic promotion of direct inter species electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion[J]. Bioresource Technology,2019,287:121373. doi:10.1016/j.biortech.2019.121373
|
12 |
LIU Fanghua, ROTARU A E, SHRESTHA P M,et al. Promoting direct inter species electron transfer with activated carbon[J]. Energy & Environmental Science,2012,5(10):8982. doi:10.1039/c2ee22459c
|
13 |
LEE S H, KANG H J, LIM T G,et al. Magnetite and granular activated carbon improve methanogenesis via different metabolic routes[J]. Fuel,2020,281:118768. doi:10.1016/j.fuel.2020.118768
|
14 |
王福振,万红友,赵子升,等. 生物炭负载纳米Fe3O4强化活性红2厌氧降解[J]. 工业水处理,2021,41(5):58-61.
URL
|
|
WANG Fuzhen, WAN Hongyou, ZHAO Zisheng,et al. Biochar loaded with Nano-Fe3O4 enhances the anaerobic degradation of reactive red 2[J]. Industrial Water Treatment,2021,41(5):58-61.
URL
|
15 |
李诗阳. 铁氧化物强化厌氧生物处理过程中胞外电子传递及其调控[D]. 大连:大连理工大学,2019.
|
|
LI Shiyang. Enhancement and regulation of extracellular electron transfer in anaerobic biological treatment by iron oxides[D]. Dalian:Dalian University of Technology,2019.
|
16 |
ZHANG Zhaohan, GAO Peng, CHENG Jiaqi,et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research,2018,136:54-63. doi:10.1016/j.watres.2018.02.025
|
17 |
ZHUANG Haifeng, HAN Hongjun, XU Peng,et al. Biodegradation of quinoline by Streptomyces sp. N01 immobilized on bamboo carbon supported Fe3O4 nanoparticles[J]. Biochemical Engineering Journal,2015,99:44-47. doi:10.1016/j.bej.2015.03.004
|
18 |
谢嘉玮,朱国营,谢军祥,等. 难降解废水生物电化学系统强化处理的研究进展[J]. 工业水处理,2020,40(10):1-7.
URL
|
|
XIE Jiawei, ZHU Guoying, XIE Junxiang,et al. Research progress on enhanced treatment of refractory wastewater by bioelectrochemical system[J]. Industrial Water Treatment,2020,40(10):1-7.
URL
|
19 |
HUA Tao, LI Shengnan, LI Fengxiang,et al. Microbial electrolysis cell as an emerging versatile technology:A review on its potential application,advance and challenge[J]. Journal of Chemical Technology & Biotechnology,2019,94(6):1697-1711. doi:10.1002/jctb.5898
|
20 |
LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690. doi:10.1126/science.1217412
|
21 |
张璐路. 直流电场强化活性污泥法处理木质素废水研究[D]. 南京:南京大学,2018.
|
|
ZHANG Lulu. Study on lignin wastewater treatment by direct current enhanced activated sludge approach[D]. Nanjing:Nanjing University,2018.
|
22 |
MOSTAFA A,IM S, LEE M K,et al. Enhanced anaerobic digestion of phenol via electrical energy input[J]. Chemical Engineering Journal,2020,389:124501. doi:10.1016/j.cej.2020.124501
|
23 |
席尚东,高磊,刘文宗,等. 利用生活污水提升厌氧-生物电化学耦合系统处理染料废水的效能及关键功能微生物研究[J]. 环境科学学报,2019,39(2):290-300.
|
|
XI Shangdong, GAO Lei, LIU Wenzong,et al. Domestic sewage enhancing azo dye wastewater treatment in anaerobic digestion-bioelectrochemical system and functional microbial community analysis[J]. Acta Scientiae Circumstantiae,2019,39(2):290-300.
|
24 |
XU Yingfeng, GE Zhipeng, ZHANG Xueqin,et al. Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems[J]. Environmental Pollution,2019,249:794-800. doi:10.1016/j.envpol.2019.03.036
|
25 |
WANG Dexin, HAN Hongjun, HAN Yuxing,et al. Enhanced treatment of Fischer-Tropsch(F-T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system:Effect of electric field[J]. Bioresource Technology,2017,232:18-26. doi:10.1016/j.biortech.2017.02.010
|
26 |
ZHANG Jingli, CAO Zhanping, ZHANG Hongwei,et al. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system[J]. Journal of Hazardous Materials,2013,262:137-142. doi:10.1016/j.jhazmat.2013.08.038
|
27 |
卢昕悦,张德龙,赵泉林,等. 厌氧生物耦合技术强化硝基芳烃降解的研究进展[J]. 工业水处理,2021,41(6):156-166. doi:10.11894/iwt.2020-0644
|
|
LU Xinyue, ZHANG Delong, ZHAO Quanlin,et al. Research progress on the integrated coupling technology of anaerobic biological process for the enhanced biodegradation of nitro-aromatic compounds[J]. Industrial Water Treatment,2021,41(6):156-166. doi:10.11894/iwt.2020-0644
|
28 |
曹占平,李岚,武鑫霞,等. 4-氯硝基苯的电辅助微生物转化机制[J]. 天津工业大学学报,2020,39(3):48-53. doi:10.3969/j.issn.1671-024x.2020.03.008
|
|
CAO Zhanping, LI Lan, WU Xinxia,et al. Electric-assisted microbial transformation process and mechanism of 4-chloronitrobenzene[J]. Journal of Tiangong University,2020,39(3):48-53. doi:10.3969/j.issn.1671-024x.2020.03.008
|
29 |
BAGCHI S, BEHERA M. Methanogenesis suppression and increased power generation in microbial fuel cell during treatment of chloroform containing wastewater[J]. Process Safety and Environmental Protection,2021,148:249-255. doi:10.1016/j.psep.2020.10.009
|
30 |
刘海波,龙宪钢,许坤德,等. 电压和电流对连续电化学厌氧消化的影响[J]. 应用化工,2021,50(8):2098-2101,2107. doi:10.3969/j.issn.1671-3206.2021.08.015
|
|
LIU Haibo, LONG Xiangang, XU Kunde,et al. Effects of voltage and current on electrochemical anaerobic digestion[J]. Applied Chemical Industry,2021,50(8):2098-2101,2107. doi:10.3969/j.issn.1671-3206.2021.08.015
|
31 |
刘海波,龙宪钢,许坤德,等. 底物浓度和水力滞留时间对电化学厌氧消化的影响[J]. 现代化工,2021,41(7):149-152.
|
|
LIU Haibo, LONG Xiangang, XU Kunde,et al. Influence of substrate concentration and hydraulic retention time on electrochemical anaerobic digestion[J]. Modern Chemical Industry,2021,41(7):149-152.
|
32 |
王海曼,曲有鹏,何伟华,等. 连续搅拌微生物电化学系统处理高浓度模拟废水的效能[J]. 哈尔滨工业大学学报,2017,49(8):42-48. doi:10.11918/j.issn.0367-6234.201607006
|
|
WANG Haiman, QU Youpeng, HE Weihua,et al. Performance of a continuous stirred microbial electrochemical reactor treating high-strength artificial wastewater[J]. Journal of Harbin Institute of Technology,2017,49(8):42-48. doi:10.11918/j.issn.0367-6234.201607006
|
33 |
杨强,黄冬根,郭涛,等. 完全混合式厌氧生物电化学系统处理2,4-二氯苯酚废水[J]. 南昌大学学报(理科版),2020,44(4):375-379.
|
|
YANG Qiang, HUANG Donggen, GUO Tao,et al. Treatment of 2,4-dichlorophenol wastewater by completely mixed anaerobic bioelectrochemical system[J]. Journal of Nanchang University(Natural Science),2020,44(4):375-379.
|
34 |
CHEN Hui, LU Donghui, CHEN Linlin,et al. A study of the coupled bioelectrochemical system-upflow anaerobic sludge blanket for efficient transformation of 2,4-dichloronitrobenzene[J]. Environmental Science and Pollution Research International,2019,26(13):13002-13013. doi:10.1007/s11356-019-04751-9
|
35 |
ROZENDAL R A, HAMELERS H V M, RABAEY K,et al. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends in Biotechnology,2008,26(8):450-459. doi:10.1016/j.tibtech.2008.04.008
|
36 |
ARENAS C, SOTRES A, ALONSO R M,et al. Pyrolysed almond shells used as electrodes in microbial electrolysis cell[J]. Biomass Conversion and Biorefinery,2022,12(2):313-321. doi:10.1007/s13399-020-00664-7
|
37 |
JI Xiaoyu, LIU Xue, YANG Wulin,et al. Sustainable phosphorus recovery from wastewater and fertilizer production in microbial electrolysis cells using the biochar-based cathode[J]. Science of the Total Environment,2022,807:150881. doi:10.1016/j.scitotenv.2021.150881
|
38 |
ZHANG Shaojun, TONG Wei, WANG Mingyu. Graphene-modified biochar anode on the electrical performance of MFC[J]. Ferroelectrics,2021,578(1):1-14. doi:10.1080/00150193.2021.1902759
|
39 |
邓丽芳,董格,蔡茜茜,等. 百香果内膜生物炭作为微生物燃料电池阴极催化剂的产电性能研究[J]. 燃料化学学报,2018,46(1):120-128. doi:10.3969/j.issn.0253-2409.2018.01.015
|
|
DENG Lifang, DONG Ge, CAI Xixi,et al. Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution[J]. Journal of Fuel Chemistry and Technology,2018,46(1):120-128. doi:10.3969/j.issn.0253-2409.2018.01.015
|
40 |
吴娜娜,郑璐,李亚峰. 三维电极法处理有机废水的研究进展[J]. 工业水处理,2016,36(8):11-15. doi:10.11894/1005-829x.2016.36(8).011
|
|
WU Nana, ZHENG Lu, LI Yafeng. Research progress in the treatment of organic wastewater by the three-dimensional electrode method[J]. Industrial Water Treatment,2016,36(8):11-15. doi:10.11894/1005-829x.2016.36(8).011
|
41 |
张轩,宋小三,王三反. 电化学三维电极技术处理废水的研究与应用进展[J]. 应用化工,2021,50(2):532-535. doi:10.3969/j.issn.1671-3206.2021.02.054
|
|
ZHANG Xuan, SONG Xiaosan, WANG Sanfan. Research and application of electrochemical three-dimensional electrode technology in wastewater treatment[J]. Applied Chemical Industry,2021,50(2):532-535. doi:10.3969/j.issn.1671-3206.2021.02.054
|
42 |
REN Guoping, HU Andong, HUANG Shaofu,et al. Graphite-assisted electro-fermentation methanogenesis:Spectroelectrochemical and microbial community analyses of cathode biofilms[J]. Bioresource Technology,2018,269:74-80. doi:10.1016/j.biortech.2018.08.078
|
43 |
YIN Changkai, SHEN Yanwen, YUAN Rongxue,et al. Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production[J]. Bioresource Technology,2019,284:315-324. doi:10.1016/j.biortech.2019.03.146
|
44 |
GUO Yating, RENE E R, HAN Bingyi,et al. Enhanced fluoroglucocorticoid removal from groundwater in a bio-electrochemical system with polyaniline-loaded activated carbon three-dimensional electrodes:Performance and mechanisms[J]. Journal of Hazardous Materials,2021,416:126197. doi:10.1016/j.jhazmat.2021.126197
|
45 |
YIN Tao, ZHANG Hui, YANG Guoqiang,et al. Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells[J]. Synthetic Metals,2019,252:8-14. doi:10.1016/j.synthmet.2019.03.027
|
46 |
DONG Jun, WU Yue, WANG Chengye,et al. Three-dimensional electrodes enhance electricity generation and nitrogen removal of microbial fuel cells[J]. Bioprocess and Biosystems Engineering,2020,43(12):2165-2174. doi:10.1007/s00449-020-02402-9
|
47 |
LIU Yang, WU Zhenyu, PENG Pin,et al. A pilot-scale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater[J]. Journal of Environmental Management,2020,258:110021. doi:10.1016/j.jenvman.2019.110021
|
48 |
WU Zhenyu, LIU Yang, WANG Siyuan,et al. A novel integrated system of three-dimensional electrochemical reactors(3DERs) and three-dimensional biofilm electrode reactors(3DBERs) for coking wastewater treatment[J]. Bioresource Technology,2019,284:222-230. doi:10.1016/j.biortech.2019.03.123
|