1 |
郑思伟,栗鸿强,薛立波,等. 中国膜产业发展概况及市场分析[J]. 水处理技术,2021,47(2):12-15.
|
|
ZHENG Siwei, LI Hongqiang, XUE Libo,et al. Overview of membrane industry development and market analysis in China[J]. Technology of Water Treatment,2021,47(2):12-15.
|
2 |
陈鹏,张绍青,张立秋,等. MBR中膜污染表征手段的研究进展[J]. 工业水处理,2021,41(8):25-33.
|
|
CHEN Peng, ZHANG Shaoqing, ZHANG Liqiu,et al. Research progress on characterization of membrane fouling in membrane bioreactors[J]. Industrial Water Treatment,2021,41(8):25-33.
|
3 |
|
|
GAO Jifeng, ZHANG Hanmin, JIANG Tao,et al. Progress in the research on the establishment of mathematical model & characterization methods of the cake layer for membrane bioreactors[J]. Industrial Water Treatment, 2012, 32(3):9-13. doi: 10.11894/1005-829x.2012.32(3).9
|
4 |
TANUDJAJA H J, CHEW J W. Assessment of oil fouling by oil-membrane interaction energy analysis[J]. Journal of Membrane Science, 2018, 560:21-29. doi: 10.1016/j.memsci.2018.05.008
|
5 |
TANUDJAJA H J, CHEW J W. Critical flux and fouling mechanism in cross flow microfiltration of oil emulsion:Effect of viscosity and bidispersity[J]. Separation and Purification Technology, 2019, 212:684-691. doi: 10.1016/j.seppur.2018.11.083
|
6 |
TANUDJAJA H J, TARABARA V V, FANE A G,et al. Effect of cross-flow velocity,oil concentration and salinity on the critical flux of an oil-in-water emulsion in microfiltration[J]. Journal of Membrane Science, 2017, 530:11-19. doi: 10.1016/j.memsci.2017.02.011
|
7 |
TANUDJAJA H J,PEE W, FANE A G,et al. Effect of spacer and crossflow velocity on the critical flux of bidisperse suspensions in microfiltration[J]. Journal of Membrane Science, 2016, 513:101-107. doi: 10.1016/j.memsci.2016.04.040
|
8 |
LI H, FANE A G, COSTER H G L,et al. Observation of deposition and removal behaviour of submicron bacteria on the membrane surface during crossflow microfiltration[J]. Journal of Membrane Science, 2003, 217(1/2):29-41. doi: 10.1016/s0376-7388(03)00066-8
|
9 |
MARSELINA Y, LE-CLECH P, STUETZ R,et al. Detailed characterisation of fouling deposition and removal on a hollow fibre membrane by direct observation technique[J]. Desalination, 2008, 231(1/2/3):3-11. doi: 10.1016/j.desal.2007.11.033
|
10 |
MARSELINA Y, LE-CLECH P, STUETZ R M,et al. Characterisation of membrane fouling deposition and removal by direct observation technique[J]. Journal of Membrane Science, 2009, 341(1/2):163-171. doi: 10.1016/j.memsci.2009.06.001
|
11 |
VALENCIA A, LE-MEN C, ELLERO C,et al. Direct observation at the microscale of particle deposition during the first stage of the microfiltration process[J]. Journal of Membrane Science, 2020, 599:117823. doi: 10.1016/j.memsci.2020.117823
|
12 |
LI Weiyi, LIU Xin, WANG Yining,et al. Analyzing the evolution of membrane fouling via a novel method based on 3D optical coherence tomography imaging[J]. Environmental Science & Technology, 2016, 50(13):6930-6939. doi: 10.1021/acs.est.6b00418
|
13 |
WEST S, WAGNER M, ENGELKE C,et al. Optical coherence tomography for the in situ three-dimensional visualization and quantification of feed spacer channel fouling in reverse osmosis membrane modules[J]. Journal of Membrane Science, 2016, 498:345-352. doi: 10.1016/j.memsci.2015.09.047
|
14 |
FORTUNATO L, BUCS S, LINARES R V,et al. Spatially-resolved in-situ quantification of biofouling using optical coherence tomography(OCT) and 3D image analysis in a spacer filled channel[J]. Journal of Membrane Science, 2017, 524:673-681. doi: 10.1016/j.memsci.2016.11.052
|
15 |
BAUER A, WAGNER M, SARAVIA F,et al. In situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography[J]. Journal of Membrane Science, 2019, 577:145-152. doi: 10.1016/j.memsci.2019.02.006
|
16 |
WONG P W, GUO Jiaxin, KHANZADA N K,et al. In situ 3D fouling visualization of membrane distillation treating industrial textile wastewater by optical coherence tomography imaging[J]. Water Research, 2021, 205:117668. doi: 10.1016/j.watres.2021.117668
|
17 |
GUO Jiaxin, WONG P W, DEKA B J,et al. Investigation of fouling mechanism in membrane distillation using in situ optical coherence tomography with green regeneration of fouled membrane[J]. Journal of Membrane Science, 2022, 641:119894. doi: 10.1016/j.memsci.2021.119894
|
18 |
SHANG Wentao, SUN Feiyun, JIA Wei,et al. High-performance nanofiltration membrane structured with enhanced stripe nano-morphology[J]. Journal of Membrane Science, 2020, 600:117852. doi: 10.1016/j.memsci.2020.117852
|
19 |
FORTUNATO L, LI M, CHENG Tuoyuan,et al. Cake layer characterization in Activated Sludge Membrane Bioreactors:Real-time analysis[J]. Journal of Membrane Science, 2019, 578:163-171. doi: 10.1016/j.memsci.2019.02.026
|
20 |
AUMANN S, DONNER S, FISCHER J,et al. Optical coherence tomography(OCT):Principle and technical realization[M]// High Resolution Imaging in Microscopy and Ophthalmology. Cham:Springer, 2019:59-85. doi: 10.1007/978-3-030-16638-0_3
|
21 |
BRANS G, VAN DINTHER A, ODUM B,et al. Transmission and fractionation of micro-sized particle suspensions[J]. Journal of Membrane Science, 2007, 290(1/2):230-240. doi: 10.1016/j.memsci.2006.12.045
|
22 |
KROMKAMP J, FABER F, SCHROEN K,et al. Effects of particle size segregation on crossflow microfiltration performance:Control mechanism for concentration polarisation and particle fractionation[J]. Journal of Membrane Science, 2006, 268(2):189-197. doi: 10.1016/j.memsci.2005.06.012
|
23 |
BEN H I, LAFFORGUE C, AYADI A,et al. In situ 3D characterization of monodispersed spherical particle deposition on microsieve using confocal laser scanning microscopy[J]. Journal of Membrane Science, 2014, 454:283-297. doi: 10.1016/j.memsci.2013.12.003
|
24 |
DI Hongzhan, MARTIN G J O, SUN Qiang,et al. Detailed,real-time characterization of particle deposition during crossflow filtration as influenced by solution properties[J]. Journal of Membrane Science, 2018, 555:115-124. doi: 10.1016/j.memsci.2018.03.021
|
25 |
HASSAN I BEN, LAFFORGUE C, AYADI A,et al. In situ 3D characterization of bidisperse cakes using confocal laser scanning microscopy[J]. Journal of Membrane Science, 2014, 466:103-113. doi: 10.1016/j.memsci.2014.04.041
|
26 |
TOW E W,RAD B, KOSTECKI R. Biofouling of filtration membranes in wastewater reuse:In situ visualization with confocal laser scanning microscopy[J]. Journal of Membrane Science, 2022, 644:120019. doi: 10.1016/j.memsci.2021.120019
|
27 |
KELLER P J, SCHMIDT A D, WITTBRODT J,et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 2008, 322(5904):1065-1069. doi: 10.1126/science.1162493
|
28 |
CHEN Lingling, ZHANG Yang, LI Renjian,et al. Light sheet fluorescence microscopy applied for in situ membrane fouling characterization:The microscopic events of hydrophilic membrane in resisting DEX fouling[J]. Water Research, 2020, 185:116240. doi: 10.1016/j.watres.2020.116240
|
29 |
CHEN Lingling, ZHANG Yang, LI Renjian,et al. In situ visualization of combined membrane fouling behaviors using multi-color light sheet fluorescence imaging:A study with BSA and dextran mixture[J]. Journal of Membrane Science, 2022, 649:120385. doi: 10.1016/j.memsci.2022.120385
|
30 |
CHEN Wei, QIAN Chen, ZHOU Kanggen,et al. Molecular spectroscopic characterization of membrane fouling:A critical review[J]. Chem, 2018, 4(7):1492-1509. doi: 10.1016/j.chempr.2018.03.011
|
31 |
BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter(NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2):797-809. doi: 10.1016/j.watres.2010.09.005
|
32 |
YU Huarong, WU Zijian, ZHANG Xiaolei,et al. Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix(FF-EEM) spectroscopy:Fouling evolution and mechanism analysis[J]. Water Research, 2019, 148:546-555. doi: 10.1016/j.watres.2018.10.041
|
33 |
YAMAMURA H, DING Qing, WATANABE Y. Solid-phase fluorescence excitation emission matrix for in situ monitoring of membrane fouling during microfiltration using a polyvinylidene fluoride hollow fiber membrane[J]. Water Research, 2019, 164:114928. doi: 10.1016/j.watres.2019.114928
|
34 |
DING Qing, OCHIAI K, YAMAMURA H. In situ and online monitoring of the chemical cleaning efficiency by solid-phase fluorescence excitation-emission matrix spectroscopy(SPF-EEM)[J]. Journal of Membrane Science, 2020, 611:118296. doi: 10.1016/j.memsci.2020.118296
|
35 |
MENG Fangang, LIAO Baoqiang, LIANG Shuang,et al. Morphological visualization,componential characterization and microbiological identification of membrane fouling in membrane bioreactors(MBRs)[J]. Journal of Membrane Science, 2010, 361(1/2):1-14. doi: 10.1016/j.memsci.2010.06.006
|
36 |
VIRTANEN T, REINIKAINEN S P, KÖGLER M,et al. Real-time fouling monitoring with Raman spectroscopy[J]. Journal of Membrane Science, 2017, 525:312-319. doi: 10.1016/j.memsci.2016.12.005
|
37 |
SUPEKAR O D, BROWN J J, GREENBERG A R,et al. Real-time detection of reverse-osmosis membrane scaling via Raman spectroscopy[J]. Industrial & Engineering Chemistry Research, 2018, 57(47):16021-16026. doi: 10.1021/acs.iecr.8b01272
|
38 |
PARK D J, SUPEKAR O D, GREENBERG A R,et al. Real-time monitoring of calcium sulfate scale removal from RO desalination membranes using Raman spectroscopy[J]. Desalination, 2021, 497:114736. doi: 10.1016/j.desal.2020.114736
|
39 |
SUPEKAR O D, PARK D J, GREENBERG A R,et al. Real-time detection of early-stage calcium sulfate and calcium carbonate scaling using Raman spectroscopy[J]. Journal of Membrane Science, 2020, 596:117603. doi: 10.1016/j.memsci.2019.117603
|
40 |
TANG Juan, JIA Hui, MU Situ,et al. Characterizing synergistic effect of coagulant aid and membrane fouling during coagulation-ultrafiltration via in situ Raman spectroscopy and electrochemical impedance spectroscopy[J]. Water Research, 2020, 172:115477. doi: 10.1016/j.watres.2020.115477
|
41 |
KÖGLER M, ZHANG Bifeng, CUI Li,et al. Real-time Raman based approach for identification of biofouling[J]. Sensors and Actuators B:Chemical, 2016, 230:411-421. doi: 10.1016/j.snb.2016.02.079
|
42 |
DUMONT E, DE BLEYE C, RADEMAKER G,et al. Development of a prototype device for near real-time surface-enhanced Raman scattering monitoring of biological samples[J]. Talanta, 2021, 224:121866. doi: 10.1016/j.talanta.2020.121866
|
43 |
|
|
|
44 |
YEO A P S, LAW A W K, FANE A G. Factors affecting the performance of a submerged hollow fiber bundle[J]. Journal of Membrane Science, 2006, 280(1/2):969-982. doi: 10.1016/j.memsci.2006.03.029
|
45 |
YEO A P S, LAW A W K, FANE A G. The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry[J]. Journal of Membrane Science, 2007, 304(1/2):125-137. doi: 10.1016/j.memsci.2007.07.039
|
46 |
LI Tian, LAW A W K, CETIN M,et al. Fouling control of submerged hollow fibre membranes by vibrations[J]. Journal of Membrane Science, 2013, 427:230-239. doi: 10.1016/j.memsci.2012.09.031
|
47 |
LIU Xuefei, WANG Yuan, WAITE T D,et al. Numerical simulation of bubble induced shear in membrane bioreactors:Effects of mixed liquor rheology and membrane configuration[J]. Water Research, 2015, 75:131-145. doi: 10.1016/j.watres.2015.02.009
|
48 |
LIU Xuefei, WANG Yuan, WAITE T D,et al. Numerical simulations of impact of membrane module design variables on aeration patterns in membrane bioreactors[J]. Journal of Membrane Science, 2016, 520:201-213. doi: 10.1016/j.memsci.2016.07.011
|
49 |
XIE Xiaomin, LE MEN C, DIETRICH N,et al. Local hydrodynamic investigation by PIV and CFD within a Dynamic filtration unit under laminar flow[J]. Separation and Purification Technology, 2018, 198:38-51. doi: 10.1016/j.seppur.2017.04.009
|
50 |
REY C, HENGL N, BAUP S,et al. Velocity,stress and concentration fields revealed by micro-PIV and SAXS within concentration polarization layers during cross-flow ultrafiltration of colloidal Laponite clay suspensions[J]. Journal of Membrane Science, 2019, 578:69-84. doi: 10.1016/j.memsci.2019.02.019
|
51 |
REY C, HENGL N, BAUP S,et al. Structure,rheological behavior,and in situ local flow fields of cellulose nanocrystal dispersions during cross-flow ultrafiltration[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12):10679-10689. doi: 10.1021/acssuschemeng.9b01333
|
52 |
SIM L N, FANE A G. Advanced monitoring of membrane fouling and control strategies[M]// Comprehensive Membrane Science and Engineering, Amsterdam:Elsevier, 2017:72-103. doi: 10.1016/b978-0-12-409547-2.12226-7
|
53 |
WANG Yanni, MA Gehua, GAO Guangzhi,et al. Bioimaging of dissolvable microneedle arrays:Challenges and opportunities[J]. Research, 2022, 2022:9758491. doi: 10.34133/2022/9758491
|
54 |
CHEN V, LI H, FANE A G. Non-invasive observation of synthetic membrane processes:A review of methods[J]. Journal of Membrane Science, 2004, 241(1):23-44. doi: 10.1016/j.memsci.2004.04.029
|
55 |
LI Xianhui, MO Y, LI Jianxin,et al. In situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes:A critical review[J]. Journal of Membrane Science, 2017, 528:187-200. doi: 10.1016/j.memsci.2017.01.030
|
56 |
RUDOLPH G, VIRTANEN T, FERRANDO M,et al. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology,biorefinery and food sectors[J]. Journal of Membrane Science, 2019, 588:117221. doi: 10.1016/j.memsci.2019.117221
|