| [1] |
张新合,卢兴玉,谭化平,等. 环氧氯丙烷皂化废水处理工艺研究[J]. 广东化工,2015,42(13):202-203.
|
|
ZHANG Xinhe, LU Xingyu, TAN Huaping,et al. Study on the processing technology of epoxy chloropropane saponification wastewater[J]. Guangdong Chemical Industry,2015,42(13):202-203.
|
| [2] |
GUO Shijun, SHARMA S, ISSAKHOV A,et al. Evaluation of the safety of high-salt wastewater treatment in coal chemical industry based on the AHP fuzzy method[J]. Journal of Chemistry, 2021, 2021(1):7107058. doi: 10.1155/2021/7107058
|
| [3] |
李慧. 电渗析-生物处理环氧氯丙烷生产过程废水研究[D]. 天津:天津大学,2014.
|
|
LI Hui. Study on electrodialysis-biological treatment of wastewater from epichlorohydrin production process[D]. Tianjin:Tianjin University,2014.
|
| [4] |
WANG Ling, CUI Youwei. Simultaneous treatment of epichlorohydrin wastewater and polyhydroxyalkanoate recovery by halophilic aerobic granular sludge highly enriched by Halomonas sp[J]. Bioresource Technology, 2024, 391:129951. doi: 10.1016/j.biortech.2023.129951
|
| [5] |
ZHENG Xiaoxian, NIU Xiaojun, ZHANG Dongqing,et al. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways:A review[J]. Chemical Engineering Journal, 2022, 429:132323. doi: 10.1016/j.cej.2021.132323
|
| [6] |
ANJORIN E O, ALFRED D M O, SOTUNDE B,et al. Overview of the mechanism of degradation of pharmaceuticals by persulfate/peroxysulfate catalysts[J]. ChemBioEng Reviews, 2024, 11(4):e202300079. doi: 10.1002/cben.202300079
|
| [7] |
帅晓丹. 甘油法环氧氯丙烷高盐废水处理技术研究[D]. 上海:华东理工大学,2014.
|
|
SHUAI Xiaodan. Study on treatment technology of high salt wastewater from epichlorohydrin by glycerol method[D]. Shanghai:East China University of Science and Technology,2014.
|
| [8] |
苏尚伟,高俊斌,慕朝,等. 富含表面羟基的活性炭制备及其在电催化氧化垃圾渗滤液中的应用[J]. 环境污染与防治,2024,46(8):1128-1132.
|
|
SU Shangwei, GAO Junbin, MU Zhao,et al. Preparation of an activated carbon rich in surface hydroxyl and its application in the electrocatalytic oxidation of landfill leachate[J]. Environmental Pollution & Control,2024,46(8):1128-1132.
|
| [9] |
RHADFI T, PIQUEMAL J Y, SICARD L,et al. Polyol-made Mn 3O 4 nanocrystals as efficient Fenton-like catalysts[J]. Applied Catalysis A:General, 2010, 386(1/2):132-139. doi: 10.1016/j.apcata.2010.07.044
|
| [10] |
HUSSAIN S, ANEGGI E,GOI D. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants:A review[J]. Environmental Chemistry Letters, 2021, 19(3):2405-2424. doi: 10.1007/s10311-021-01185-z
|
| [11] |
MAMONTOV E, EGAMI T, BREZNY R,et al. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia[J]. The Journal of Physical Chemistry B, 2000, 104(47):11110-11116. doi: 10.1021/jp0023011
|
| [12] |
BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H 2O 2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275:121-135. doi: 10.1016/j.jhazmat.2014.04.054
|
| [13] |
ZHENG Yanxia, YANG Lixi, HUANG Chuxin,et al. Catalytic activation of peroxodisulfate using shape-controlled cerium-manganese composite oxide for phenol degradation:Kinetics and degradation pathway investigation[J]. Journal of Rare Earths, 2024, 42(8):1514-1523. doi: 10.1016/j.jre.2023.10.008
|
| [14] |
ZHAO Lele, ZHANG Zhiping, LI Yushi,et al. Synthesis of CeaMnO x hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion[J]. Applied Catalysis B:Environmental, 2019, 245:502-512. doi: 10.1016/j.apcatb.2019.01.005
|
| [15] |
QI Fei, XU Bingbing, CHEN Zhonglin,et al. Influence of aluminum oxides surface properties on catalyzed ozonation of 2,4,6-trichloroanisole[J]. Separation and Purification Technology, 2009, 66(2):405-410. doi: 10.1016/j.seppur.2009.01.013
|
| [16] |
HOU B, LIU J, TANG J,et al. Heterogeneous Fenton oxidation of aniline aerofloat catalyzed by Fe/Mn binary oxides supported on activated carbon:Performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2025, 13(1):115126. doi: 10.1016/j.jece.2024.115126
|
| [17] |
GOSU V, SIKARWAR P, SUBBARAMAIAH V. Mineralization of pyridine by CWPO process using nFe 0/GAC catalyst[J]. Journal of Environmental Chemical Engineering, 2018, 6(1):1000-1007. doi: 10.1016/j.jece.2018.01.017
|
| [18] |
HE Guangjun, ZHONG Dengjie, XU Yunlan,et al. Pyrite/H 2O 2/hydroxylamine system for efficient decolorization of rhodamine B[J]. Water Science and Technology, 2021, 83(9):2218-2231. doi: 10.2166/wst.2021.135
|
| [19] |
刘宇程,杨冰,李沁蔓,等. Cl-和pH对高级氧化工艺去除含盐废水中有机物的影响及机理[J]. 环境工程学报,2021,15(5):1487-1499.
|
|
LIU Yucheng, YANG Bing, LI Qinman,et al. Effects and mechanism of Cl- and pH on organic matter removal in saltcontaining wastewater treatment by advanced oxidation processes[J]. Chinese Journal of Environmental Engineering,2021,15(5):1487-1499.
|
| [20] |
WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:1502-1517. doi: 10.1016/j.cej.2017.11.059
|
| [21] |
ARVANITI O S, IOANNIDI A A, MANTZAVINOS D,et al. Heat-activated persulfate for the degradation of micropollutants in water:A comprehensive review and future perspectives[J]. Journal of Environmental Management, 2022, 318:115568. doi: 10.1016/j.jenvman.2022.115568
|
| [22] |
ANTONIOU M G, DE LA CRUZ A A, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis,thermolysis and e - transfer mechanisms[J]. Applied Catalysis B:Environmental, 2010, 96(3/4):290-298. doi: 10.1016/j.apcatb.2010.02.013
|
| [23] |
ZHAO Qingxia, MAO Qiming, ZHOU Yaoyu,et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes:A review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189:224-238. doi: 10.1016/j.chemosphere.2017.09.042
|
| [24] |
HUO Jiajie, TESSONNIER J P, SHANKS B H. Improving hydrothermal stability of supported metal catalysts for biomass conversions:A review[J]. ACS Catalysis, 2021, 11(9):5248-5270. doi: 10.1021/acscatal.1c00197
|
| [25] |
|
|
ZHANG Li. Experimental study on treatment of landfill leachate by advanced oxidation technology[D]. Beijing:Beijing University of Technology, 2014. doi: 10.1016/j.biortech.2013.05.006
|
| [26] |
ZOU L, WANG Y, HUANG C,et al. Meta-cresol degradation by persulfate through UV/O 3 synergistic activation:Contribution of free radicals and degradation pathway[J]. Science of the Total Environment, 2021, 754: 142219. doi: 10.1016/j.scitotenv.2020.142219
|
| [27] |
程澳,陈丹,任兰天,等. 蘑菇渣和稻秸堆肥中不同分子量水溶性有机物含量分布和光谱特征[J]. 光谱学与光谱分析,2024,44(5):1330-1337.
|
|
CHENG Ao, CHEN Dan, REN Lantian,et al. The distributions and spectral characteristics of molecular weight-fractionated dissolved organic matter derived from mushroom residue and rice straw compost[J]. Spectroscopy and Spectral Analysis,2024,44(5):1330-1337.
|
| [28] |
BLUM K M, ANDERSSON P L, RENMAN G,et al. Non-target screening and prioritization of potentially persistent,bioaccumulating and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants[J]. Science of the Total Environment, 2017, 575:265-275. doi: 10.1016/j.scitotenv.2016.09.135
|
| [29] |
胡兴,刘易,杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展,2024,43():325-334.
|
|
HU Xing, LIU Yi, DU Zexue. Research progress of catalysts for direct synthesis of epichlorohydrin in 3-chloropropene[J]. Chemical Industry and Engineering Progress,2024,43(S1):325-334.
|
| [30] |
SANTACESARIA E, TESSER R, DI SERIO M,et al. New process for producing epichlorohydrin via glycerol chlorination[J]. Industrial & Engineering Chemistry Research, 2010, 49(3):964-970. doi: 10.1021/ie900650x
|
| [31] |
VITIELLO R, RUSSO V, TURCO R,et al. Glycerol chlorination in a gas-liquid semibatch reactor:New catalysts for chlorohydrin production[J]. Chinese Journal of Catalysis, 2014, 35(5):663-669. doi: 10.1016/s1872-2067(14)60069-3
|
| [32] |
MUNOZ M, DE PEDRO Z M, CASAS J A,et al. Combining efficiently catalytic hydrodechlorination and wet peroxide oxidation (HDC-CWPO) for the abatement of organochlorinated water pollutants[J]. Applied Catalysis B:Environmental, 2014, 150:197-203. doi: 10.1016/j.apcatb.2013.12.029
|
| [33] |
PÉREZ-MOYA M, GRAELLS M, DEL VALLE L J,et al. Fenton and photo-Fenton degradation of 2-chlorophenol:Multivariate analysis and toxicity monitoring[J]. Catalysis Today, 2007, 124(3/4):163-171. doi: 10.1016/j.cattod.2007.03.034
|
| [34] |
JIANG Jingyi, ZHANG Xiangru. A smart strategy for controlling disinfection byproducts by reversing the sequence of activated carbon adsorption and chlorine disinfection[J]. Science Bulletin, 2018, 63(18):1167-1169. doi: 10.1016/j.scib.2018.07.022
|
| [35] |
XU Guofang, ZHAO Siyan, CHEN Chen,et al. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyls catalyzed by a reductive dehalogenase in Dehalococcoides mccartyi strain MB[J]. Environmental Science & Technology,2022,56(7):4039-4049.
|
| [36] |
XU Jiang, CHEN Chaohuang, HU Xiaohong,et al. Particle-scale understanding of arsenic interactions with sulfidized nanoscale zerovalent iron and their impacts on dehalogenation reactivity[J]. Environmental Science & Technology, 2023, 57(51):21917-21926. doi: 10.1021/acs.est.3c08635
|
| [37] |
MENG Di, ZHU Qian, WEI Yan,et al. Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation[J]. Chinese Journal of Catalysis, 2020, 41(10):1474-1479. doi: 10.1016/s1872-2067(20)63582-3
|
| [38] |
GUO Yun, LI Yang, WANG Zhiwei. Electrocatalytic hydro-dehalogenation of halogenated organic pollutants from wastewater:A critical review[J]. Water Research, 2023, 234:119810. doi: 10.1016/j.watres.2023.119810
|