[1] |
WU Dongquan, SUI Qian, YU Xia,et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs:Analytical method development and application in Yangtze River Delta,China[J]. Science of the Total Environment, 2021, 753:141653. doi: 10.1016/j.scitotenv.2020.141653
|
[2] |
GONG Weijing, ZHOU Tao, WU Sanlan,et al. A retrospective analysis of clinical efficacy of ribavirin in adults hospitalized with severe COVID-19[J]. Journal of Infection and Chemotherapy, 2021, 27(6):876-881. doi: 10.1016/j.jiac.2021.02.018
|
[3] |
CHEN Xiangping, LEI Lei, LIU Sitian,et al. Occurrence and risk assessment of pharmaceuticals and personal care products(PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan,China[J]. Science of the Total Environment, 2021, 792:148352. doi: 10.1016/j.scitotenv.2021.148352
|
[4] |
LIU Qixin, FENG Xuan, CHEN Ning,et al. Occurrence and risk assessment of typical PPCPs and biodegradation pathway of ribavirin in wastewater treatment plants[J]. Environmental Science and Ecotechnology, 2022, 11:100184. doi: 10.1016/j.ese.2022.100184
|
[5] |
KURODA K, LI Cong, DHANGAR K,et al. Predicted occurrence,ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters[J]. Science of the Total Environment, 2021, 776:145740. doi: 10.1016/j.scitotenv.2021.145740
|
[6] |
SONG Zhou, TANG Heqing, WANG Nan,et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system[J]. Journal of Hazardous Materials, 2013, 262:332-338. doi: 10.1016/j.jhazmat.2013.08.059
|
[7] |
QU Yan, ZHANG Chaojie, LI Fei,et al. Photo-reductive defluorination of perfluorooctanoic acid in water[J]. Water Research, 2010, 44(9):2939-2947. doi: 10.1016/j.watres.2010.02.019
|
[8] |
GU Jia, YANG Ling, JIANG Jin,et al. Insights into the effects of alcohols on hydrated electron(e aq -) generation from the p-benzoquinone/UV process[J]. Applied Catalysis B:Environmental, 2018, 220:477-487. doi: 10.1016/j.apcatb.2017.07.031
|
[9] |
SUN Zhuyu, ZHANG Chaojie, XING Lu,et al. UV/nitrilotriacetic acid process as a novel strategy for efficient photoreductive degradation of perfluorooctanesulfonate[J]. Environmental Science & Technology, 2018, 52(5):2953-2962. doi: 10.1021/acs.est.7b05912
|
[10] |
BUXTON G V, GREENSTOCK C L, PHILLIPS HELMAN W,et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(·OH/·O -) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886. doi: 10.1063/1.555805
|
[11] |
JIN Ling, ZHANG Pengyi. Photochemical decomposition of perfluorooctane sulfonate(PFOS) in an anoxic alkaline solution by 185 nm vacuum ultraviolet[J]. Chemical Engineering Journal, 2015, 280:241-247. doi: 10.1016/j.cej.2015.06.022
|
[12] |
GU Yurong, LIU Tongzhou, WANG Hongjie,et al. Hydrated electron based decomposition of perfluorooctane sulfonate(PFOS) in the VUV/sulfite system[J]. Science of the Total Environment, 2017, 607:541-548. doi: 10.1016/j.scitotenv.2017.06.197
|
[13] |
HE Jianzhou, BOERSMA M, SONG Ziteng,et al. Biochar and surfactant synergistically enhanced PFAS destruction in UV/sulfite system at neutral pH[J]. Chemosphere, 2024, 353:141562. doi: 10.1016/j.chemosphere.2024.141562
|
[14] |
LI Mengkai, WANG Chen,YAU M,et al. Sulfamethazine degradation in water by the VUV/UV process:Kinetics,mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system[J]. Water Research, 2017, 108:348-355. doi: 10.1016/j.watres.2016.11.018
|
[15] |
GONZALEZ M G, OLIVEROS E, WÖRNER M,et al. Vacuum-ultraviolet photolysis of aqueous reaction systems[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2004, 5(3):225-246. doi: 10.1016/j.jphotochemrev.2004.10.002
|
[16] |
PAN Huimei, HUANG Yuanxi, LI Juan,et al. Coexisting oxidation and reduction of chloroacetaldehydes in water by UV/VUV irradiation[J]. Water Research, 2022, 214:118192. doi: 10.1016/j.watres.2022.118192
|
[17] |
ZHANG Jing, ZHANG Honglong, LIU Xin,et al. Efficient reductive and oxidative decomposition of haloacetic acids by the vacuum-ultraviolet/sulfite system[J]. Water Research, 2022, 210:117974. doi: 10.1016/j.watres.2021.117974
|
[18] |
YANG Shewei, SUN Jian, HU Yongyou,et al. Effect of vacuum ultraviolet on ultrasonic defluorination of aqueous perfluorooctanesulfonate[J]. Chemical Engineering Journal, 2013, 234:106-114. doi: 10.1016/j.cej.2013.08.073
|
[19] |
CHEN Jing, ZHANG Pengyi, LIU Jian. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light[J]. Journal of Environmental Sciences, 2007, 19(4):387-390. doi: 10.1016/s1001-0742(07)60064-3
|
[20] |
HUIE R E, CLIFTON C L. Rate constants for hydrogen abstraction reactions of the sulfate radical,SO 4 ·- alkanes and ethers[J]. International Journal of Chemical Kinetics, 1989, 21(8):611-619. doi: 10.1002/kin.550210802
|
[21] |
LI Zheng, WU Chunshan, ZHENG Qiping,et al. Accelerated degradation and toxicity reduction of ribavirin by organic free radicals in the ferrate-acetylacetonate system[J]. Separation and Purification Technology, 2024, 330:125636. doi: 10.1016/j.seppur.2023.125636
|
[22] |
LI Zheng, ZHENG Qiping, CAI Kaicong,et al. Degradation of ribavirin by potassium ferrate(Ⅵ):Kinetics,degradation pathway and toxicity assessment[J]. Process Safety and Environmental Protection, 2023, 180:735-743. doi: 10.1016/j.psep.2023.10.034
|
[23] |
LIU Xiaoyu, HONG Yuntao, DING Shunke,et al. Transformation of antiviral ribavirin during ozone/PMS intensified disinfection amid COVID-19 pandemic[J]. Science of the Total Environment, 2021, 790:148030. doi: 10.1016/j.scitotenv.2021.148030
|
[24] |
GUO Kehui, LIU Yang, PENG Jianfeng,et al. Chlorination of antiviral drug ribavirin:Kinetics,nontargeted identification,and concomitant toxicity evolution[J]. Journal of Hazardous Materials, 2024, 467:133478. doi: 10.1016/j.jhazmat.2024.133478
|
[25] |
SUN Qiyuan, YANG Jing, FAN Yongjie,et al. The role of trace N-oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/chlorine process[J]. Applied Catalysis B:Environmental, 2022, 317:121709. doi: 10.1016/j.apcatb.2022.121709
|
[26] |
JIANG Jinchan, AN Zexiu, LI Mingxue,et al. Comparison of ribavirin degradation in the UV/H 2O 2 and UV/PDS systems:Reaction mechanism,operational parameter and toxicity evaluation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1):109193. doi: 10.1016/j.jece.2022.109193
|
[27] |
WU Xiaoping, ZHANG Jun, HU Shengchao,et al. Evaluation of degradation performance toward antiviral drug ribavirin using advanced oxidation process and its relations to ecotoxicity evolution[J]. Science of the Total Environment, 2022, 850:157851. doi: 10.1016/j.scitotenv.2022.157851
|
[28] |
LIU Xiaowei, ZHANG Tuqiao, WANG Lili,et al. Hydrated electron-based degradation of atenolol in aqueous solution[J]. Chemical Engineering Journal, 2015, 260:740-748. doi: 10.1016/j.cej.2014.08.109
|
[29] |
BOLTON J R, BIRCHER K G, TUMAS W,et al. Figures-of-merit for the technical development and application of advanced oxidation processes[J]. Journal of Advanced Oxidation Technologies, 1996, 1(1):13-17. doi: 10.1515/jaots-1996-0104
|
[30] |
MAZA W A, BRESLIN V M, PLYMALE N T,et al. Nanosecond transient absorption studies of the pH-dependent hydrated electron quenching by HSO 3 - [J]. Photochemical & Photobiological Sciences, 2019, 18:1526. doi: 10.1039/c9pp00063a
|
[31] |
YU Yanghai, FENG Liying, QIAO Junlian,et al. New insights into bromate removal by UV/sulfite process:Influencing factors,mechanism,and energy efficiency[J]. Journal of Water Process Engineering, 2022, 48:102917. doi: 10.1016/j.jwpe.2022.102917
|
[32] |
SONG Ge, SU Pei, ZHANG Qizhan,et al. Revisiting UV/sulfite exposed to air:A redox process for reductive dechlorination and oxidative mineralization[J]. Science of the Total Environment, 2023, 859:160246. doi: 10.1016/j.scitotenv.2022.160246
|
[33] |
LIU Yuting, GAO Changfei, LIU Lifen,et al. Green degradation for ribavirin on sulfur-doped MnFe 2O 4 photoelectrocatalysis cathode electrode[J]. Separation and Purification Technology, 2023, 326:124833. doi: 10.1016/j.seppur.2023.124833
|
[34] |
沈立栋. 亚硫酸盐/碘化物/紫外体系还原去除Cr(Ⅵ)的效能及机理[D]. 杭州:浙江工商大学,2022.
|
|
SHEN Lidong. Efficiency and mechanism of hexavalent chromium reduction by sulfite/iodide/UV[D]. Hangzhou:Zhejiang Gongshang University,2022.
|
[35] |
LUO Congwei, GAO Jing, MA Qiao,et al. The bromate formation accompanied by the degradation of 2,4-bromophenol in UV/peroxymonosulfate[J]. Separation and Purification Technology, 2020, 233:116028. doi: 10.1016/j.seppur.2019.116028
|
[36] |
GOSLAN E H, GURSES F, BANKS J,et al. An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes[J]. Chemosphere, 2006, 65(7):1113-1119. doi: 10.1016/j.chemosphere.2006.04.041
|
[37] |
LIU Zhi, LIN Yili, XU Bin,et al. Degradation of diiodoacetamide in water by UV/chlorination:Kinetics,efficiency,influence factors and toxicity evaluation[J]. Chemosphere, 2020, 240:124761. doi: 10.1016/j.chemosphere.2019.124761
|