| [1] |
MALIK S, KISHORE S, PRASAD S,et al. A comprehensive review on emerging trends in industrial wastewater research[J]. Journal of Basic Microbiology, 2022, 62(3/4):296-309. doi: 10.1002/jobm.202100554
|
| [2] |
HU Shen, XIE Kangjun, ZHANG Xumei,et al. Significantly enhanced capacitance deionization performance by coupling activated carbon with triethyltetramine-functionalized graphene[J]. Chemical Engineering Journal, 2020, 384:123317. doi: 10.1016/j.cej.2019.123317
|
| [3] |
SONG Haiou, WU Yifan, ZHANG Shupeng,et al. Mesoporous generation-inspired ultrahigh capacitive deionization performance by sono-assembled activated carbon/inter-connected graphene network architecture[J]. Electrochimica Acta, 2016, 205:161-169. doi: 10.1016/j.electacta.2016.04.082
|
| [4] |
GAMAETHIRALALAGE J G, SINGH K, SAHIN S,et al. Recent advances in ion selectivity with capacitive deionization[J]. Energy & Environmental Science, 2021, 14(3):1095-1120. doi: 10.1039/d0ee03145c
|
| [5] |
MOSSAD M, ZOU Linda. A study of the capacitive deionisation performance under various operational conditions[J]. Journal of Hazardous Materials, 2012, 213:491-497. doi: 10.1016/j.jhazmat.2012.02.036
|
| [6] |
AGARTAN L, HAYES-OBERST B, BYLES B W,et al. Influence of operating conditions and cathode parameters on desalination performance of hybrid CDI systems[J]. Desalination, 2019, 452:1-8. doi: 10.1016/j.desal.2018.10.025
|
| [7] |
LI Haibo, GAO Yang, PAN Likun,et al. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes[J]. Water Research, 2008, 42(20):4923-4928. doi: 10.1016/j.watres.2008.09.026
|
| [8] |
CAUDLE D D. Electrochemical demineralization of water with carbon electrodes[J]. Entific Reports,1966,4:7397.
|
| [9] |
KIM B, SEO J Y, CHUNG C H. A hybrid system of capacitive deionization and redox flow battery for continuous desalination and energy storage[J]. Journal of Power Sources, 2020, 448:227384. doi: 10.1016/j.jpowsour.2019.227384
|
| [10] |
KANG Hu, LU Zhenzong, ZHANG Dan,et al. Efficient fluoride removal in hybrid capacitive deionization enabled by Ce-Zn-MOF-derived CeO 2@C and birnessite electrodes[J]. Separation and Purification Technology, 2025, 353:128551. doi: 10.1016/j.seppur.2024.128551
|
| [11] |
ALAM R, FAHEEM M, HE Yao,et al. Ion selective electrosorption by two pseudocapacitive intercalating nanocomposite electrodes[J]. Desalination, 2023, 566:116923. doi: 10.1016/j.desal.2023.116923
|
| [12] |
CAO Zheng, HU Shen, YANG Qi,et al. Confinement of nitrogen-doped porous carbon between graphene layers as a bifunctional electrode for zinc-air battery-driven capacitive deionization[J]. Chemical Engineering Journal, 2022, 450:138126. doi: 10.1016/j.cej.2022.138126
|
| [13] |
SIEKIERKA A, BRYJAK M. Selective sorbents for recovery of lithium ions by hybrid capacitive deionization[J]. Desalination, 2021, 520:115324. doi: 10.1016/j.desal.2021.115324
|
| [14] |
YANG Dan, LI Xuguang, LI Yanfei,et al. Capacitive deionization of high concentrations of hexavalent chromium using nickel-ferric-layered double hydroxide/molybdenum disulfide asymmetric electrode[J]. Journal of Colloid and Interface Science, 2023, 634:793-803. doi: 10.1016/j.jcis.2022.12.100
|
| [15] |
SONG Xiang, CHEN Xing, CHEN Wenqing,et al. MOFs-derived Fe,N-co-doped porous carbon anchored on activated carbon for enhanced phosphate removal by capacitive deionization[J]. Separation and Purification Technology, 2023, 307:122694. doi: 10.1016/j.seppur.2022.122694
|
| [16] |
JIN Wei, HU Meiqing, SUN Zhi,et al. Simultaneous and precise recovery of lithium and boron from salt lake brine by capacitive deionization with oxygen vacancy-rich CoP/Co 3O 4-graphene aerogel[J]. Chemical Engineering Journal, 2021, 420:127661. doi: 10.1016/j.cej.2020.127661
|
| [17] |
DATAR S D, MANE R S, KUMAR N,et al. Effective removal of heavy metal-lead and inorganic salts by microporous carbon derived from zeolitic imidazolate framework-67 electrode using capacitive deionization[J]. Desalination, 2023, 558:116619. doi: 10.1016/j.desal.2023.116619
|
| [18] |
CAO Zheng, HU Shen, YU Jian,et al. Enhanced capacitive deionization of toxic metal ions using nanoporous walnut shell-derived carbon[J]. Journal of Environmental Chemical Engineering, 2022, 10(5):108245. doi: 10.1016/j.jece.2022.108245
|
| [19] |
FAHEEM M, ALAM R, ALHAJAJ A,et al. Recovery of lithium by pseudocapacitive electrodes in capacitive deionization[J]. Electrochimica Acta, 2024, 489:144267. doi: 10.1016/j.electacta.2024.144267
|
| [20] |
LI Yuanyuan, CHEN Nan, LI Zengling,et al. Reborn three-dimensional graphene with ultrahigh volumetric desalination capacity[J]. Advanced Materials, 2021, 33(48):2105853. doi: 10.1002/adma.202105853
|
| [21] |
HUO Silu, ZHANG Peng, HE Mingming,et al. Sustainable development of ultrathin porous carbon nanosheets with highly accessible defects from biomass waste for high-performance capacitive desalination[J]. Green Chemistry, 2021, 23(21):8554-8565. doi: 10.1039/d1gc02576g
|
| [22] |
SHI Mingxing, HONG Xianyong, LIU Chun,et al. Green double organic salt activation strategy for one-step synthesis of N-doped 3D hierarchical porous carbon for capacitive deionization[J]. Chemical Engineering Journal, 2023, 453:139764. doi: 10.1016/j.cej.2022.139764
|
| [23] |
WANG Hongyu, YOU Henghui, WU Guoqing,et al. Co/Fe co-doped ZIF-8 derived hierarchically porous composites as high-performance electrode materials for Cu 2+ ions capacitive deionization[J]. Chemical Engineering Journal, 2023, 460:141621. doi: 10.1016/j.cej.2023.141621
|
| [24] |
XIE Ning, LI Yaqian, YUAN Yijin,et al. Fabricating a flow-through hybrid capacitive deionization cell for selective recovery of lithium ions[J]. ACS Applied Energy Materials, 2021, 4(11):13036-13043. doi: 10.1021/acsaem.1c02654
|
| [25] |
YAO Liyi, MA Chao, SUN Libo,et al. Highly crystalline polyimide covalent organic framework as dual-active-center cathode for high-performance lithium-ion batteries[J]. Journal of the American Chemical Society, 2022, 144(51):23534-23542. doi: 10.1021/jacs.2c10534
|
| [26] |
NISOLA G M, PAROHINOG K J, CHO M K,et al. Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water[J]. Chemical Engineering Journal, 2020, 389:123421. doi: 10.1016/j.cej.2019.123421
|
| [27] |
ZHAO Hong, LIANG Qi, YANG Yongzhen,et al. Magnetic graphene oxide surface lithium ion-imprinted material towards lithium extraction from salt lake[J]. Separation and Purification Technology, 2021, 265:118513. doi: 10.1016/j.seppur.2021.118513
|
| [28] |
PAN Shuxin, XIE Tingzheng, XIAO Tangfu,et al. Extensive removal of thallium by graphene oxide functionalized with aza-crown ether[J]. RSC Advances, 2020, 10(72):44470-44480. doi: 10.1039/d0ra09193f
|
| [29] |
LI Yifei, HAN Ning, HE Qiongqiong,et al. Nitrogen-doped substrate material ion imprinting-capacitive deionization selective recovery of lithium ions from acidic solutions[J]. Environmental Science and Pollution Research, 2024, 31(19):27949-27960. doi: 10.1007/s11356-024-32991-x
|
| [30] |
TORREJOS R E C, NISOLA G M, PARK M J,et al. Synthesis and characterization of multi-walled carbon nanotubes-supported dibenzo-14-crown-4 ether with proton ionizable carboxyl sidearm as Li + adsorbents[J]. Chemical Engineering Journal, 2015, 264:89-98. doi: 10.1016/j.cej.2014.11.036
|
| [31] |
WANG Zhirou, HUANG Xinhua, TONG Y,et al. N,P-doping tuning the coordination structure of carbon electrode for efficiency of copper ions capacitance deionization[J]. Desalination, 2024, 571:117062. doi: 10.1016/j.desal.2023.117062
|
| [32] |
JIN Meiyue, HUANG Xinhua, WANG Zhirou,et al. Mn,N co-doped carbon nanospheres for efficient capture of uranium(Ⅵ) via capacitive deionization[J]. Chemosphere, 2023, 342:140190. doi: 10.1016/j.chemosphere.2023.140190
|
| [33] |
WANG Guizhi, YAN Tingting, SHEN Junjie,et al. Capacitive removal of fluoride ions via creating multiple capture sites in a modulatory heterostructure[J]. Environmental Science & Technology, 2021, 55(17):11979-11986. doi: 10.1021/acs.est.1c03228
|
| [34] |
ZHANG Hao, WANG Qiaoying, ZHANG Jie,et al. Development of novel ZnZr-COOH/CNT composite electrode for selectively removing phosphate by capacitive deionization[J]. Chemical Engineering Journal, 2022, 439:135527. doi: 10.1016/j.cej.2022.135527
|
| [35] |
HAO Zhengle, CAI Yanmeng, WANG Yue,et al. A coupling technology of capacitive deionization and MoS 2/nitrogen-doped carbon spheres with abundant active sites for efficiently and selectively adsorbing low-concentration copper ions[J]. Journal of Colloid and Interface Science, 2020, 564:428-441. doi: 10.1016/j.jcis.2019.12.063
|
| [36] |
ZHAO Feiping, CHEN Shixing, XIANG Hongrui,et al. Selectively capacitive recovery of rare earth elements from aqueous solution onto Lewis base sites of pyrrolic-N doped activated carbon electrodes[J]. Carbon, 2022, 197:282-291. doi: 10.1016/j.carbon.2022.06.033
|
| [37] |
RETHINASABAPATHY M, BHASKARAN G, HWANG S K,et al. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization[J]. Chemosphere, 2023, 336:139256. doi: 10.1016/j.chemosphere.2023.139256
|
| [38] |
SINGH K, LI Guanna, LEE J H,et al. Divalent ion selectivity in capacitive deionization with vanadium hexacyanoferrate:Experiments and quantum-chemical computations[J]. Advanced Functional Materials, 2021, 31(41):2105203. doi: 10.1002/adfm.202105203
|
| [39] |
NIE Pengfei, YAN Junbin, ZHU Guodong,et al. Inverted hybrid-capacitive deionization with polyaniline nanotubes doped activated carbon as an anode[J]. Electrochimica Acta, 2020, 339:135920. doi: 10.1016/j.electacta.2020.135920
|
| [40] |
CHEN Yi, PU Shengyan, ZHANG Zhe,et al. The ions storage mechanism of capacitive-faradic coupling effect for pseudo-intercalation electrode MnO 2 [J]. Separation and Purification Technology, 2024, 330:125529. doi: 10.1016/j.seppur.2023.125529
|
| [41] |
ZHANG Ying, LI Haolin, YANG Qian,et al. Core-shell 2D nanoarchitectures:Engineering N,P-doped graphitic carbon/MXene heterostructures for superior capacitive deionization[J]. Journal of Materials Chemistry A, 2023, 11(26):14356-14365. doi: 10.1039/d3ta00696d
|
| [42] |
GONG Siqi, LIU Huibin, ZHAO Fan,et al. Vertically aligned bismuthene nanosheets on MXene for high-performance capacitive deionization[J]. ACS Nano, 2023, 17(5):4843-4853. doi: 10.1021/acsnano.2c11430
|
| [43] |
WU Haotian, XU Longqian, ZHANG Yunqian,et al. Selective chromium and copper recovery from wastewater using flow-electrode capacitance deionization:In situ reduction mechanism regulating metal charging characteristics[J]. Separation and Purification Technology, 2024, 328:124970. doi: 10.1016/j.seppur.2023.124970
|
| [44] |
徐胡娟,马楫,林振锋,等. 层状双金属氢氧化物MgAl-LDO-L-Cys对水中Hg(Ⅱ)的去除[J]. 工业水处理,2025,45(5):127-134.
|
|
XU Hujuan, MA Ji, LIN Zhenfeng,et al. Highly efficient removal of Hg(Ⅱ) from water by layered bimetallic hydroxide MgAl-LDO-L-Cys[J]. Industrial Water Treatment,2025,45(5):127-134.
|
| [45] |
ZHAO Xiaoyu, WEI Hongxin, ZHAO Huachao,et al. Electrode materials for capacitive deionization:A review[J]. Journal of Electroanalytical Chemistry, 2020, 873:114416. doi: 10.1016/j.jelechem.2020.114416
|
| [46] |
YIN Zhiwei, CHEN Lin, CAO Chuqing,et al. UiO-66-NH 2 modified thin film nanocomposite(TFN) membranes for selective separation of Li +/Co 2+ in a flow electrode capacitive deionization system[J]. Journal of Environmental Chemical Engineering, 2024, 12(1):111711. doi: 10.1016/j.jece.2023.111711
|
| [47] |
JIANG Tao, WEI Yanan, WEI Haibing,et al. Selective mono/divalent ion separation in bifunctional ionomeric capacitive deionization incorporated with counter-charge ionomer layer[J]. Separation and Purification Technology, 2025, 354:128902. doi: 10.1016/j.seppur.2024.128902
|
| [48] |
WANG Haitao, MI Xueyue, LI Yi,et al. 3D graphene-based macrostructures for water treatment[J]. Advanced Materials, 2020, 32(3):1806843. doi: 10.1002/adma.201806843
|
| [49] |
KANETO K, HATA F,UTO S. Structure and size of ions electrochemically doped in conducting polymer[J]. Journal of Micromechanics and Microengineering, 2018, 28(5):054003. doi: 10.1088/1361-6439/aaaef5
|
| [50] |
RAHM M, HOFFMANN R, ASHCROFT N W. Atomic and ionic radii of elements 1-96[J]. Chemistry-A European Journal, 2016, 22(41):14625-14632. doi: 10.1002/chem.201602949
|
| [51] |
FANG A, KROENLEIN K, RICCARDI D,et al. Highly mechanosensitive ion channels from graphene-embedded crown ethers[J]. Nature Materials, 2018, 18(1):76-81. doi: 10.1038/s41563-018-0220-4
|
| [52] |
BAUDINO L, PEDICO A, BIANCO S,et al. Crown-ether functionalized graphene oxide membrane for lithium recovery from water[J]. Membranes, 2022, 12(2):233. doi: 10.3390/membranes12020233
|
| [53] |
ZHANG Haixia, HUANG Zengxin, ZHAO Pengyu,et al. Crown ether functionalized graphene oxide as ultrasensitive electrochemical sensor for detection of potassium ions[J]. Materials Research Express, 2019, 6(12):125095. doi: 10.1088/2053-1591/ab5d65
|
| [54] |
KUMAR S, ALDAQQA N M, ALHSEINAT E,et al. Electrode materials for desalination of water via capacitive deionization[J]. Angewandte Chemie International Edition, 2023, 62(35):e202302180. doi: 10.1002/ange.202302180
|
| [55] |
ZHANG Bingjie, BORETTI A, CASTELLETTO S. Mxene pseudocapacitive electrode material for capacitive deionization[J]. Chemical Engineering Journal, 2022, 435:134959. doi: 10.1016/j.cej.2022.134959
|
| [56] |
LIN Peng, YANG Tao, LI Zhengtong,et al. Ion transport channels in redox flow deionization enable ultra-high desalination performance[J]. Nano Energy, 2022, 102:107652. doi: 10.1016/j.nanoen.2022.107652
|
| [57] |
WANG Jian, DAI Jinhong, JIANG Zhuosheng,et al. Recent progress and prospect of flow-electrode electrochemical desalination system[J]. Desalination, 2021, 504:114964. doi: 10.1016/j.desal.2021.114964
|
| [58] |
WEI Qiang, TANG Lufan, RAMALINGAM K,et al. Redox-catalysis flow electrode desalination in an organic solvent[J]. Journal of Materials Chemistry A, 2021, 9(39):22254-22261. doi: 10.1039/d1ta05350g
|
| [59] |
TANG Lufan, WEI Qiang, YAN Jiawei,et al. Redox flow capacitive deionization in a mixed electrode solvent of water and ethanol[J]. Journal of the Electrochemical Society, 2022, 169(1):013501. doi: 10.1149/1945-7111/ac47e9
|
| [60] |
WEI Qiang, HU Yudi, WANG Jian,et al. Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry[J]. Carbon, 2020, 170:487-492. doi: 10.1016/j.carbon.2020.07.044
|
| [61] |
KIM N, HONG S P, LEE J,et al. High-desalination performance via redox couple reaction in the multichannel capacitive deionization system[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19):16182-16189. doi: 10.1021/acssuschemeng.9b03121
|