1 |
Zhao H F , Nam P K S , Richards V L , et al. Thermal decomposition studies of EPS foam, polyurethane foam, and epoxy resin (SLA) as patterns for investment casting; analysis of hydrogen cyanide (HCN) from thermal degradation of polyurethane foam[J]. International Journal of Metalcasting, 2019, 13 (1): 18- 25.
doi: 10.1007/s40962-018-0240-5
|
2 |
Rahimi S , Khosravi A , Aazami S , et al. Effect of smoking on cyanide, IL-2 and IFN-γ levels in saliva of smokers and nonsmokers[J]. Polish Annals of Medicine, 2018, 25 (2): 203- 206.
|
3 |
Vetter J . Plant cyanogenic glycosides[J]. Toxicon, 2000, 38 (1): 11- 36.
doi: 10.1016/S0041-0101(99)00128-2
|
4 |
Wei Y M , Du L , Deng X , et al. Alkaline-assisted leaching of iron-cyanide complex from contaminated soils[J]. Chemical Engineering Journal, 2018, 354, 53- 61.
doi: 10.1016/j.cej.2018.07.152
|
5 |
张苗苗, 陈皓, 郜洪文. 气热提取法快速测定液样中的痕量氰化物[J]. 理化检验:化学分册, 2018, 54 (4): 379- 382.
URL
|
6 |
陈玉柱, 孙一鸣. 在线蒸馏-无人值守连续流动分析法测定地表水中的氰化物[J]. 仪器仪表与分析监测, 2017, (4): 36- 39.
doi: 10.3969/j.issn.1002-3720.2017.04.010
|
7 |
张烨, 王珂, 刘石生. 外源β-葡萄糖苷酶处理结合异烟酸-吡唑啉酮分光光度法测定橡胶籽中氰化物含量[J]. 食品科学, 2017, 38 (14): 297- 303.
doi: 10.7506/spkx1002-6630-201714046
|
8 |
吴小琼, 吕沈聪, 高薇薇, 等. 柱前衍生-顶空气相色谱法快速测定血中氰化物[J]. 中国卫生检验杂志, 2018, 28 (17): 37- 39.
URL
|
9 |
于光. 顶空毛细管柱气相色谱法测定空气中氰化物[J]. 预防医学情报杂志, 2018, 34 (5): 161- 163.
URL
|
10 |
Marton D , Tapparo A , di Marco V B , et al. Ultratrace determination of total and available cyanides in industrial wastewaters through a rapid headspace-based sample preparation and gas chromatography with nitrogen phosphorous detection analysis[J]. Journal of Chromatography A, 2013, 1300, 209- 216.
doi: 10.1016/j.chroma.2013.03.004
URL
|
11 |
黄绳炳. 气相色谱法测定电镀废水中氰化物[J]. 海峡科学, 2008, (3): 27- 29.
doi: 10.3969/j.issn.1673-8683.2008.03.010
URL
|
12 |
张学, 朱建民, 彭立核, 等. 吹扫捕集-气相色谱-质谱联用法测定白酒中氰化物[J]. 中国食品卫生杂志, 2016, 28 (3): 344- 347.
URL
|
13 |
朱友, 蔚亦沛, 别振英, 等. 金属络合衍生-高效液相色谱法测定卷烟主流烟气中的氰化氢[J]. 中国烟草科学, 2015, 36 (5): 74- 78.
URL
|
14 |
Lacroix C , Saussereau E , Boulanger F , et al. Online liquid chromatography-tandem mass spectrometry cyanide determination in blood[J]. Journal of Analytical Toxicology, 2011, 35 (3): 143- 147.
doi: 10.1093/anatox/35.3.143
URL
|
15 |
Kang H I , Shin H S . Derivatization method of free cyanide including cyanogen chloride for the sensitive analysis of cyanide in chlorinated drinking water by liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2015, 87 (2): 975- 981.
doi: 10.1021/ac503401r
|
16 |
Jaszczak E , Ruman M , Narkowicz S , et al. Development of an analytical protocol for determination of cyanide in human biological samples based on application of ion chromatography with pulsed amperometric detection[J]. Journal of Analytical Methods in Chemistry, 2017, 2017, 1- 7.
URL
|
17 |
栾绍嵘, 刘建云, 张芳芳, 等. 离子色谱安培法检测维生素B6与2-噻吩乙酸中的氰化物[J]. 药物分析杂志, 2018, 38 (3): 490- 494.
URL
|
18 |
Huang Dongya , Peng Youkai , Yan Jinting . Detection of cyanide in pollution-free livestock product breeding water by ion chromatography[J]. Asian Agricultural Research, 2018, 10 (1): 34- 36.
URL
|
19 |
Papezová K , Glatz Z . Determination of cyanide in microliter samples by capillary electrophoresis and in-capillary enzymatic reaction with rhodanese[J]. Journal of Chromatography A, 2006, 1120 (1/2): 268- 272.
URL
|
20 |
关彩霞,郭一鹏,汪慬,等. "真空检测管-电子比色法"快检技术在天津大爆炸事件中的应用[C]//2015年现场检测仪器前沿技术研讨会论文集. 2015: 47-50.
|
21 |
向双全, 张志刚. 原子吸收石墨炉法测定白酒中的氰化物[J]. 酿酒科技, 2015, (3): 127- 129.
URL
|
22 |
杨笑棣, 张玲艳. 水中痕量氰化物的高灵敏冷原子吸收间接测定方法[J]. 干旱环境监测, 1994, 8 (2): 81- 83.
URL
|
23 |
朱颖洁, 郭磊, 刘易, 等. 基于壳层隔绝纳米粒子和在线裂解-吹扫捕集的血液氰化物表面增强拉曼光谱快速检测方法[J]. 分析化学, 2017, 45 (5): 10- 15.
URL
|
24 |
刘易, 陈佳, 朱颖洁, 等. 基于表面增强拉曼光谱和顶空-气相色谱/氮磷检测技术的生氰糖苷类中成药中游离态氰化物含量测定[J]. 药物分析杂志, 2018, 38 (7): 1202- 1209.
URL
|
25 |
Abbaspour A , Asadi M , Ghaffarinejad A , et al. A selective modified carbon paste electrode for determination of cyanide using tetra3, 4-pyridinoporphyrazinatocobalt(Ⅱ)[J]. Talanta, 2005, 66 (4): 931- 936.
doi: 10.1016/j.talanta.2004.12.062
|
26 |
Cheng J , Jandik P , Avdalovic N . Pulsed amperometric detection of sulfide, cyanide, iodide, Thiosulfate, bromide and thiocyanate with microfabricated disposable silver working electrodes in ion chromatography[J]. Analytica Chimica Acta, 2005, 536 (1/2): 267- 274.
URL
|
27 |
Kumar V , Kumar V , Singh A K , et al. A potentiometric biosensor for cyanide detection using immobilized whole cell cyanide dihydratase of flavobacterium indicum MTCC 6936[J]. Journal of Analytical Chemistry, 2018, 73 (10): 1014- 1019.
doi: 10.1134/S1061934818100039
|
28 |
Hallaj R , Haghighi N . Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles[J]. Microchimica Acta, 2017, 184 (9): 3581- 3590.
doi: 10.1007/s00604-017-2366-1
|
29 |
李腾, 黄桂兰, 袁铃, 等. 氟化物衍生-19F-核磁共振法检测水样中氰化物[J]. 理化检验:化学分册, 2018, 54 (4): 443- 448.
URL
|
30 |
张连群, 张文珠, 何纯定. 流动注射法同时检测水中挥发酚和氰化物[J]. 中国食品卫生杂志, 2018, 30 (1): 49- 53.
URL
|
31 |
卢杰映. 饮用天然矿泉水中氰化物的测定——异烟酸-巴比妥酸光谱法与流动注射在线蒸馏法的方法对比[J]. 现代食品, 2018, 40 (11): 123- 126.
URL
|
32 |
Amayreh M Y , Abulkibash A M . Differential electrolytic potentiometry:a detector in the flow injection analysis of cyanide using silver electrodes modified with carbon nanotubes[J]. Arabian Journal for Science and Engineering, 2017, 42 (10): 4445- 4451.
doi: 10.1007/s13369-017-2570-7
|
33 |
Beck H P , Zhang B , Bordeanu A . Fluorimetric determination of free cyanide by flow-injection analysis[J]. Analytical Letters, 2003, 36 (10): 2211- 2228.
doi: 10.1081/AL-120023712
|
34 |
Dadfarnia S , Haji Shabani A M , Tamadon F , et al. Indirect determination of free cyanide in water and industrial waste water by flow injection-atomic absorption spectrometry[J]. Microchimica Acta, 2007, 158 (1/2): 159- 163.
URL
|
35 |
US EPA Method OIA-1677 Available cyanide by flow injection, ligand exchange, and amperometry[S]. US EPA, Washington, DC, 2004.
|
36 |
Kang Jin , Huo Fangjun , Zhang Yongbin , et al. A novel near-infrared ratiometric fluorescent probe for cyanide and its bioimaging applications[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 209, 95- 99.
doi: 10.1016/j.saa.2018.10.037
|
37 |
Gimeno N , Li X E , Durrant J , et al. Cyanide sensing with organic dyes:studies in solution and on nanostructured Al2O3 surfaces[J]. Chemistry, 2008, 14 (10): 3006- 3012.
doi: 10.1002/chem.200700412
|
38 |
周彬彬, 汪霞丽, 王芳斌, 等. 基于多肽识别基团的荧光探针及其对食品中氰化物的检测[J]. 食品与机械, 2016, 32 (10): 44- 47.
URL
|
39 |
张春霞, 董昌刚, 张莹, 等. 新型荧光探针的合成与苦杏仁中氰化物含量的检测[J]. 食品科技, 2018, 43 (7): 337- 342.
URL
|
40 |
Mohammadi A , Kianfar M . A simple colorimetric chemosensor with highly performance for detection of cyanide and copper ions and its practical application in real samples[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 367, 22- 31.
doi: 10.1016/j.jphotochem.2018.08.015
|
41 |
Yu Xueying , Wang Kangnan , Cao Duxia , et al. Simple benzothiazole chemosensor for detection of cyanide anions via nucleophilic addition[J]. Chemistry of Heterocyclic Compounds, 2017, 53 (1): 42- 45.
URL
|
42 |
Promchat A , Rashatasakhon P , Sukwattanasinitt M . A novel indolium salt as a highly sensitive and selective fluorescent sensor for cyanide detection in water[J]. Journal of Hazardous Materials, 2017, 329, 255- 261.
doi: 10.1016/j.jhazmat.2017.01.024
|
43 |
Li Zheng , Liu Chong , Wang Shujun , et al. Visual detection of cyanide ion in aqueous medium by a new chromogenic azo-azomethine chemosensor[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 210, 321- 328.
doi: 10.1016/j.saa.2018.11.052
|
44 |
Maji S , Chowdhury B , Pal S , et al. An indolium ion functionalized naphtha imide chemodosimeter for detection of cyanide in aqueous medium[J]. Inorganica Chimica Acta, 2018, 483, 321- 328.
doi: 10.1016/j.ica.2018.08.040
|
45 |
周彬彬, 张继红, 王芳斌, 等. 可视化分子探针的设计、合成及其对食品中氰化物的检测[J]. 食品科学, 2017, 38 (12): 304- 309.
doi: 10.7506/spkx1002-6630-201712047
|
46 |
Al-Soliemy A M . Novel asymmetrical phenothiazine for fluorescent detection of cyanide anions[J]. Journal of Molecular Structure, 2019, 1179, 525- 531.
doi: 10.1016/j.molstruc.2018.11.046
|
47 |
Li Qingyun , Wang Zhencao , Song Wenwen , et al. A novel D-π-A triphenylamine-based turn-on colorimetric and ratiometric fluorescence probe for cyanide detection[J]. Dyes and Pigments, 2019, 161, 389- 395.
doi: 10.1016/j.dyepig.2018.09.074
|
48 |
夏晓东, 黄昊文. 蛋清生物模拟矿化合成荧光银纳簇和氰化物荧光探针[J]. 无机化学学报, 2011, 27 (12): 2367- 2371.
URL
|
49 |
Achadu O J , Nyokong T . Fluorescence "turn-on" nanosensor for cy anide ion using supramolecular hybrid of graphene quantum dots and cobalt pyrene-derivatized phthalocyanine[J]. Dyes and Pigments, 2019, 160, 328- 335.
doi: 10.1016/j.dyepig.2018.08.038
|
50 |
Feng Yang , Deng Dongyan , Zhang Lichun , et al. LRET-based functional persistent luminescence nanoprobe for imaging and detection of cyanide ion[J]. Sensors and Actuators B:Chemical, 2019, 279, 189- 196.
doi: 10.1016/j.snb.2018.09.111
|