1 |
ZENG Qian, WANG Yu, ZAN Feixiang,et al. Biogenic sulfide for azo dye decolorization from textile dyeing wastewater[J]. Chemosphere,2021,283:131158. doi:10.1016/j.chemosphere.2021.131158
doi: 10.1016/j.chemosphere.2021.131158
|
2 |
PERALTA-ZAMORA P, KUNZ A, DE MORAES S G,et al. Degradation of reactive dyes I. A comparative study of ozonation,enzymatic and photochemical processes[J]. Chemosphere,1999,38(4):835-852. doi:10.1016/s0045-6535(98)00227-6
doi: 10.1016/s0045-6535(98)00227-6
|
3 |
周骏,肖九花,方长玲,等. UV/PMS体系硝基氯酚降解动力学及机理研究[J]. 中国环境科学, 2016,36(1):66-73. doi:10.3969/j.issn.1000-6923.2016.01.011
doi: 10.3969/j.issn.1000-6923.2016.01.011
|
|
ZHOU Jun, XIAO Jiuhua, FANG Changling,et al. Degradation kinetics and mechanisms of chloronitrophenol in UV/PMS system[J].China Environmental Science,2016,36(1):66-73. doi:10.3969/j.issn.1000-6923.2016.01.011
doi: 10.3969/j.issn.1000-6923.2016.01.011
|
4 |
JI Y, DONG C, KONG D,et al. Heat-activated persulfate oxidation of atrazine:Implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal,2015,263:45-54. doi:10.1016/j.cej.2014.10.097
doi: 10.1016/j.cej.2014.10.097
|
5 |
CHEN Liwei, HU Xiaoxin, YANG Ying,et al. Degradation of atrazine and structurally related s-triazine herbicides in soils by ferrous-activated persulfate:Kinetics,mechanisms and soil-types effects[J]. Chemical Engineering Journal,2018,351:523-531. doi:10.1016/j.cej.2018.06.045
doi: 10.1016/j.cej.2018.06.045
|
6 |
LIANG Jun, XU Xiaoyun, ZAMAN W Q,et al. Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole:Roles of radicals in solution or solid phase[J]. Chemical Engineering Journal,2019,375:121908. doi:10.1016/j.cej.2019.121908
doi: 10.1016/j.cej.2019.121908
|
7 |
MAGIOGLOU E, FRONTISTIS Z, VAKROS J,et al. Activation of persulfate by biochars from valorized olive stones for the degradation of sulfamethoxazole[J]. Catalysts,2019,9(5):419. doi:10.3390/catal9050419
doi: 10.3390/catal9050419
|
8 |
DONG Yujie, CUI Xinxin, LU Xu,et al. Enhanced degradation of sulfadiazine by novel β-alaninediacetic acid-modified Fe3O4 nanocomposite coupled with peroxymonosulfate[J]. Science of the Total Environment,2019,662:490-500. doi:10.1016/j.scitotenv.2019.01.280
doi: 10.1016/j.scitotenv.2019.01.280
|
9 |
LI Chenxu, WU Jaen, PENG Wei,et al. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites:Coexistence of radical and non-radical reactions[J]. Chemical Engineering Journal,2019,356:904-914. doi:10.1016/j.cej.2018.09.064
doi: 10.1016/j.cej.2018.09.064
|
10 |
常西亮,胡雪菲,蒋煜峰,等. 不同温度下小麦秸秆生物炭的制备及表征[J]. 环境科学与技术,2017,40(4):24-29.
|
|
CHANG Xiliang, HU Xuefei, JIANG Yufeng,et al. Biochar made from wheat straw:Preparation and characterization[J]. Environmental Science & Technology,2017,40(4):24-29.
|
11 |
SHI Qianqian, ZHANG Jian, ZHANG Chenglu,et al. Preparation of activated carbon from cattail and its application for dyes removal[J]. Journal of Environmental Sciences,2010,22(1):91-97. doi:10.1016/s1001-0742(09)60079-6
doi: 10.1016/s1001-0742(09)60079-6
|
12 |
郑庆福,王永和,孙月光,等. 不同物料和炭化方式制备生物炭结构性质的FTIR研究[J]. 光谱学与光谱分析,2014,34(4):962-966. doi:10.3964/j.issn.1000-0593(2014)04-0962-05
doi: 10.3964/j.issn.1000-0593(2014)04-0962-05
|
|
ZHENG Qingfu, WANG Yonghe, SUN Yueguang,et al. Study on structural properties of biochar under different materials and carbonized by FTIR[J]. Spectroscopy and Spectral Analysis,2014,34(4):962-966. doi:10.3964/j.issn.1000-0593(2014)04-0962-05
doi: 10.3964/j.issn.1000-0593(2014)04-0962-05
|
13 |
WAN Zhong, WANG Jianlong. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst [J]. Journal of Chemical Technology & Biotechnology,2017,92(4):874-883. doi:10.1002/jctb.5072
doi: 10.1002/jctb.5072
|
14 |
ZHANG Tao, ZHU Haibo, CROUE J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water:Efficiency,stability,and mechanism [J]. Environment Science & Technology,2013,47(6):2784-2791. doi:10.1021/es304721g
doi: 10.1021/es304721g
|
15 |
QI Chengdu, LIU Xitao, MA Jun,et al. Activation of peroxymonosulfate by base:Implications for the degradation of organic pollutants[J]. Chemosphere,2016,151:280-288. doi:10.1016/j.chemosphere.2016.02.089
doi: 10.1016/j.chemosphere.2016.02.089
|
16 |
CHONG Shan, ZHANG Guangming, ZHANG Nan,et al. Diclofenac degradation in water by FeCeOx catalyzed H2O2:Influencing factors,mechanism and pathways[J]. Journal of Hazardous Materials,2017,334:150-159. doi:10.1016/j.jhazmat.2017.04.008
doi: 10.1016/j.jhazmat.2017.04.008
|
17 |
葛勇建,蔡显威,林翰,等. 碱活化过一硫酸盐降解水中环丙沙星[J]. 环境科学,2017,38(12):5116-5123. doi:10.13227/j.hjkx.201704232
doi: 10.13227/j.hjkx.201704232
|
|
GE Yongjian, CAI Xianwei, LIN Han,et al. Base activation of peroxymonosulfate for the degradation of ciprofloxacin in water[J]. Environmental Science,2017,38(12):5116-5123. doi:10.13227/j.hjkx.201704232
doi: 10.13227/j.hjkx.201704232
|
18 |
BARZEGAR G, JORFI S, ZAREZADE V,et al. 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron:Reusability,identification of degradation intermediates and potential application for real wastewater[J]. Chemosphere,2018,201:370-379. doi:10.1016/j.chemosphere.2018.02.143
doi: 10.1016/j.chemosphere.2018.02.143
|
19 |
HOLGER V L, STEPHANIE B, INSA R,et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology,2015,49(3):1673-1680. doi:10.1021/es503496u
doi: 10.1021/es503496u
|
20 |
LIANG Chenju, WANG Z, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃[J]. Science of the Total Environment,2006,370(2/3):271-277. doi:10.1016/j.scitotenv.2006.08.028
doi: 10.1016/j.scitotenv.2006.08.028
|
21 |
WANG Jun, DUAN Xiaoguang, GAO Jian,et al. Roles of structure defect,oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants[J]. Water Research,2020,185:116244. doi:10.1016/j.watres.2020.116244
doi: 10.1016/j.watres.2020.116244
|