1 |
ZHOU Yinzhu, ZENG Yanyan, ZHOU Jinlong,et al. Distribution of groundwater arsenic in Xinjiang,P.R. China[J]. Applied Geochemistry,2017,77:116-125. doi:10.1016/j.apgeochem.2016.09.005
doi: 10.1016/j.apgeochem.2016.09.005
|
2 |
李庆超,姜红兵,詹中华,等. 含砷污水的处理工艺现状与展望[J]. 化学世界,2017,58(8):504-508. doi:10.19500/j.cnki.0367-6358.2016.12.19.0004
doi: 10.19500/j.cnki.0367-6358.2016.12.19.0004
|
|
LI Qingchao, JIANG Hongbing, ZHAN Zhonghua,et al. Arsenic removal in wastewater [J]. Chemical World,2017,58(8):504-508. doi:10.19500/j.cnki.0367-6358.2016.12.19.0004
doi: 10.19500/j.cnki.0367-6358.2016.12.19.0004
|
3 |
ZHOU Jizhi, SHU Weikang, GAO Yuan,et al. Enhanced arsenite immobilization via ternary layered double hydroxides and application to paddy soil remediation[J]. RSC Advances,2017,7(33):20320-20326. doi:10.1039/c6ra28116h
doi: 10.1039/c6ra28116h
|
4 |
马琳,涂书新. 含砷废水修复技术的研究现状和展望[J]. 工业水处理,2009,29(7):1-6. doi:10.11894/1005-829x.2009.29(7).1
doi: 10.11894/1005-829x.2009.29(7).1
|
|
MA Lin, TU Shuxin. Status quo and prospect of the repairing techniques of arsenic-containing wastewater[J]. Industrial Water Treatment,2009,29(7):1-6. doi:10.11894/1005-829x.2009.29(7).1
doi: 10.11894/1005-829x.2009.29(7).1
|
5 |
廖祥文. 含砷工业废水处理技术现状及展望[J]. 矿产综合利用,2006, 4(4):27-30. doi:10.3969/j.issn.1000-6532.2006.04.008
doi: 10.3969/j.issn.1000-6532.2006.04.008
|
|
LIAO Xiangwen. Current status and outlook of arsenic-containing industrial wastewater treatment technology[J]. Multipurpose Utilization of Mineral Resources,2006, 4(4):27-30. doi:10.3969/j.issn.1000-6532.2006.04.008
doi: 10.3969/j.issn.1000-6532.2006.04.008
|
6 |
CAPORALE A G, PIGNA M, AZAM S M G G,et al. Effect of competing ligands on the sorption/desorption of arsenite on/from Fe-Mg-Layered Double Hydroxides(Fe-Mg-LDH)[J]. Chemical Engineering Journal. 2013,225:704-709. doi:10.1016/j.cej.2013.03.111
doi: 10.1016/j.cej.2013.03.111
|
7 |
LU Hongtao, LU Tiantian, ZHANG Hua,et al. Enhanced adsorption performance of aspartic acid intercalated Mg-Zn-Fe-LDH materials for arsenite[J]. Dalton Trans,2018,47(14):4994-5004. doi:10.1039/c8dt00199e
doi: 10.1039/c8dt00199e
|
8 |
WANG Shengsen, GAO Bin, LI Yuncong. Enhanced arsenic removal by biochar modified with nickel(Ni) and manganes(Mn) oxyhydroxides[J]. Journal of Industrial & Engineering Chemistry,2016,37:361-365. doi:10.1016/j.jiec.2016.03.048
doi: 10.1016/j.jiec.2016.03.048
|
9 |
WANG Shengsen, GAO Bin, LI Yuncong,et al. Sorption of arsenic onto Ni/Fe layered double hydroxide(LDH)-biochar composites[J]. RSC Advances,2016,6(22):17792-17799. doi:10.1039/c5ra17490b
doi: 10.1039/c5ra17490b
|
10 |
SHEN Liang, JIANG Xiuli, CHEN Zheng,et al. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(Ⅲ) and As(Ⅴ) adsorption[J]. Chemosphere,2017,176:57-66. doi:10.1016/j.chemosphere.2017.02.100
doi: 10.1016/j.chemosphere.2017.02.100
|
11 |
MANTOVANI K M, MOLGERO WESTRUP K C, DA S J R,et al. Oxidation catalyst obtained by the immobilization of layered double hydroxide/Mn(Ⅲ) porphyrin on monodispersed silica spheres[J]. Dalton Transactions,2018,47(9):3068. doi:10.1039/c7dt03656f
doi: 10.1039/c7dt03656f
|
12 |
廖玉梅,余杰,魏世强,等. FeMnNi-LDHs对水中As(Ⅲ)的吸附性能与机制[J]. 环境科学,2021,42(1):293-304.
|
|
LIAO Yumei, YU Jie, WEI Shiqiang,et al. Adsorption effect and mechanism of aqueous arsenic on FeMnNi-LDHs[J]. Environmental Science,2021,42(1):293-304.
|
13 |
RYU S R, JEON E K, YANG J S,et al. Adsorption of As(Ⅲ) and As(Ⅴ) in groundwater by Fe-Mn binary oxide-impregnated granular activated carbon(IMIGAC)[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,72:62-69. doi:10.1016/j.jtice.2017.01.004
doi: 10.1016/j.jtice.2017.01.004
|
14 |
PIGNA M, DYNES J J, VIOLANTE A,et al. Sorption of arsenite on Cu-Al,Mg-Al,Mg-Fe,and Zn-Al layered double hydroxides in the presence of inorganic anions commonly found in aquatic environments[J]. Environmental Engineering Science. 2015,33(2):98-104. doi:10.1089/ees.2015.0131
doi: 10.1089/ees.2015.0131
|
15 |
OTGONJARGAL E, KIM Y S, PARK S M,et al. Mn-Fe layered double hydroxides for adsorption of As(Ⅲ) and As(Ⅴ)[J]. Separation Science & Technology,2012,47(14/15):2192-2198.
|
16 |
MURAYAMA N,KAI M, SHIBATA J,et al. Manufacturing process of layered double hydroxide using iron and steel slag as a raw material[J]. Resources Processing,2016,63(4):111-119. doi:10.4144/rpsj.63.111
doi: 10.4144/rpsj.63.111
|
17 |
魏元峰. 铁基吸附剂制备及氧化—吸附协同去除水中三价砷的研究[D]. 长沙:湖南大学,2019. doi:10.1016/j.jhazmat.2019.03.070
doi: 10.1016/j.jhazmat.2019.03.070
|
|
WEI Yuanfeng. Study on the removal of arsenite from water through synergistic oxidation-adsorption by iron-based adsorbent[D]. Changsha:Hunan University,2019. doi:10.1016/j.jhazmat.2019.03.070
doi: 10.1016/j.jhazmat.2019.03.070
|
18 |
孙天一. Fe3O4基复合材料光催化氧化/吸附同步去除水中砷的研究[D]. 哈尔滨:哈尔滨工业大学,2018.
|
|
SUN Tianyi. Removal of arsenic from aqueous solution through simultaneous photocatalytic oxidation and adsorption of Fe3O4 based composites[D]. Harbin:Harbin Institute of Technology,2018.
|
19 |
MA Lin, CAI Dongmei, TU Shuxin. Arsenite simultaneous sorption and oxidation by natural ferruginous manganese ores with various ratios of Mn/Fe[J]. Chemical Engineering Journal,2020,382:123040. doi:10.1016/j.cej.2019.123040
doi: 10.1016/j.cej.2019.123040
|
20 |
ZHENG Qian, HOU Jingtao, HARTLEY W. As(Ⅲ) adsorption on Fe-Mn binary oxides:Are Fe and Mn oxides synergistic or antagonistic for arsenic removal[J]. Chemical Engineering Journal,2020,389:124470. doi:10.1016/j.cej.2020.124470
doi: 10.1016/j.cej.2020.124470
|