1 |
MUSHTAQ F, ZAHID M, BHATTI I A,et al. Possible applications of coal fly ash in wastewater treatment[J]. Journal of Environmental Management, 2019, 240:27-46. doi: 10.1016/j.jenvman.2019.03.054
|
2 |
BANERJEE S, SHARMA G C, CHATTOPADHYAYA M C,et al. Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH)[J]. Journal of Environmental Chemical Engineering, 2014, 2(3):1870-1880. doi: 10.1016/j.jece.2014.06.020
|
3 |
|
|
JIANG Long. Comprehensiveutilization situation of fly ash in coal-fired power plants and its development suggestions[J]. Clean Coal Technology, 2020, 26(4):31-39. doi: 10.13226/j.issn.1006-6772.F19062501
|
4 |
ZHAO Yongchun, ZHANG Junying, TIAN Chong,et al. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in China[J]. Energy & Fuels, 2010, 24(2):834-843. doi: 10.1021/ef900947y
|
5 |
SOW M,HOT J, TRIBOUT C,et al. Characterization of Spreader Stoker Coal Fly Ashes (SSCFA) for their use in cement-based applications[J]. Fuel, 2015, 162:224-233. doi: 10.1016/j.fuel.2015.09.017
|
6 |
RUBIO B, IZQUIERDO M T, MAYORAL M C,et al. Preparation and characterization of carbon-enriched coal fly ash[J]. Journal of Environmental Management, 2008, 88(4):1562-1570. doi: 10.1016/j.jenvman.2007.07.027
|
7 |
BROWN P, JONES T, BÉRUBÉ K. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations[J]. Environmental Pollution, 2011, 159(12):3324-3333. doi: 10.1016/j.envpol.2011.08.041
|
8 |
|
|
MA Zhibin, ZHANG Xueli, GUO Yanxia,et al. Research progress on characteristics and element dissolution behaviors of circulating gluidized bed-derived fly ash[J]. Chemical Industry and Engineering Progress, 2021, 40(6):3058-3071. doi: 10.16085/j.issn.1000-6613.2020-1384
|
9 |
MEDINA A, GAMERO P, QUEROL X,et al. Fly ash from a Mexican mineral coal I:Mineralogical and chemical characterization[J]. Journal of Hazardous Materials, 2010, 181(1/2/3):82-90. doi: 10.1016/j.jhazmat.2010.04.096
|
10 |
NYALE S M, BABAJIDE O O, BIRCH G D,et al. Synthesis and characterization of coal fly ash-based foamed geopolymer[J]. Procedia Environmental Sciences, 2013, 18:722-730. doi: 10.1016/j.proenv.2013.04.098
|
11 |
YEHEYIS M B, SHANG J Q, YANFUL E K. Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications[J]. Journal of Environmental Engineering and Science, 2008, 7(5):481-498. doi: 10.1139/s08-019
|
12 |
|
|
LI Wenqing, ZOU Ping, CHI Junzhou,et al. Leaching of alumina from circulating fluidized bed fly ash using hydrochloric acid[J]. Hydrometallurgy of China, 2020, 39(2):110-113. doi: 10.13355/j.cnki.sfyj.2020.02.006
|
13 |
韩非,张彦平,李敏,等. 热改性粉煤灰对水中Cr(Ⅵ)的吸附性能[J]. 工业水处理,2016,36(4):46-49.
|
|
HAN Fei, ZHANG Yanping, LI Min,et al. Adsorption capacity of thermal modified fly ash for Cr(Ⅵ) from water[J]. Industrial Water Treatment,2016,36(4):46-49.
|
14 |
|
|
LUO Xin, YANG Yixin, XU Dongyao. Study on adsorption of Cu(Ⅱ) by thermal modified fly ash[J]. Applied Chemical Industry, 2020, 49(9):2242-2245. doi: 10.3969/j.issn.1671-3206.2020.09.023
|
15 |
YAN Kezhou, GUO Yanxia, LIU Dandan,et al. Thermal decomposition and transformation mechanism of mullite with the action of sodium carbonate[J]. Journal of Solid State Chemistry, 2018, 265:326-331. doi: 10.1016/j.jssc.2018.06.014
|
16 |
WOOLARD C D, STRONG J, ERASMUS C R. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams[J]. Applied Geochemistry, 2002, 17(8):1159-1164. doi: 10.1016/s0883-2927(02)00057-4
|
17 |
|
|
HUANG Xunrong, ZHAO Hanghang, ZHANG Guibin,et al. Adsorption of Cd 2+ from wastewater by modified fly ash[J]. Chinese Journal of Applied Ecology, 2019, 30(9):3215-3223. doi: 10.13287/j.1001-9332.201909.040
|
18 |
QIU Ruifang, CHENG Fangqin, HUANG Haiming. Removal of Cd 2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant[J]. Journal of Cleaner Production, 2018, 172:1918-1927. doi: 10.1016/j.jclepro.2017.11.236
|
19 |
XU Ke, DENG Tong, LIU Juntan,et al. Study on the phosphate removal from aqueous solution using modified fly ash[J]. Fuel, 2010, 89(12):3668-3674. doi: 10.1016/j.fuel.2010.07.034
|
20 |
|
|
YIN Fulong, DU Zhichao. Research on the adsorption of Cu 2+ with microwave-assisted acid modified fly ash[J]. Non-Metallic Mines, 2018, 41(4):96-98. doi: 10.3969/j.issn.1000-8098.2018.04.030
|
21 |
|
|
WU Changnian, LING Qi, TANG Yuchao,et al. Study on the adsorption performance of cadmium with microwave-assisted acid modified fly ash[J]. Applied Chemical Industry, 2016, 45(8):1428-1430. doi: 10.16581/j.cnki.issn1671-3206.20160527.023
|
22 |
高宏,李恒,贺波,等. 用改性粉煤灰微珠吸附处理铅锌硫化矿选矿废水[J]. 湿法冶金,2018,37(1):40-44.
|
|
GAO Hong, LI Heng, HE Bo,et al. Adsorption treatment of beneficiation wastewater of Pb-Zn sulfide ore by sulphuric acid modified fly ash[J]. Hydrometallurgy of China,2018,37(1):40-44.
|
23 |
许效天,霍林,左叶颖,等. 铝改性粉煤灰漂珠吸附水溶液中砷的性能研究[J]. 中国环境科学,2011,31(8):1300-1305.
|
|
XU Xiaotian, HUO Lin, ZUO Yeying,et al. Performance research on arsenic adsorption from aqueous solution by aluminum-modified fly ash cenospheres[J]. China Environmental Science,2011,31(8):1300-1305.
|
24 |
|
|
ZENG Jing, LIU Chunhua. Adsorption of copper(Ⅱ) ions by modified fly ash from power plant and application of the modified fly ash in wastewater treatment for copper electroplating[J]. Materials Protection, 2007, 40(6):55-57. doi: 10.3969/j.issn.1001-1560.2007.06.020
|
25 |
|
|
LI Xilin, ZHAO Xue, XIANG Yingxue,et al. Experimental study on adsorption Cr(Ⅵ) and Cr(Ⅲ) of chromium-containing wastewater by modified fly ash[J]. Non-Metallic Mines, 2015, 38(4):75-77. doi: 10.3969/j.issn.1000-8098.2015.04.023
|
26 |
GENG Xinze, DUAN Yufeng, ZHAO Shilin,et al. Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent[J]. Chemosphere, 2021, 274:129637. doi: 10.1016/j.chemosphere.2021.129637
|
27 |
欧阳平,范洪勇,张贤明,等. 基于吸附的粉煤灰改性机理研究进展[J]. 材料科学与工程学报,2014,32(4):619-624.
|
|
OUYANG Ping, FAN Hongyong, ZHANG Xianming,et al. Research progress of the modification mechanism of flyash based on adsorption[J]. Journal of Materials Science and Engineering,2014,32(4):619-624.
|
28 |
VISA M, CHELARU A M. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment[J]. Applied Surface Science, 2014, 303:14-22. doi: 10.1016/j.apsusc.2014.02.025
|
29 |
张亚男,韩洪晶,张梅,等. Ti掺杂NaP分子筛的合成及其吸附性能[J]. 硅酸盐学报,2020,48(12):1966-1975.
|
|
ZHANG Yanan, HAN Hongjing, ZHANG Mei,et al. Synthesis of NaP zeolite doped with titanium and its adsorption performance[J]. Journal of the Chinese Ceramic Society,2020,48(12):1966-1975.
|
30 |
ZHANG Yanan, CHEN Yanguang, KANG Wei,et al. Excellent adsorption of Zn(Ⅱ) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment[J]. Journal of Cleaner Production, 2020, 258:120736. doi: 10.1016/j.jclepro.2020.120736
|
31 |
PAPANDREOU A, STOURNARAS C J, PANIAS D. Copper and cadmium adsorption on pellets made from fired coal fly ash[J]. Journal of Hazardous Materials, 2007, 148(3):538-547. doi: 10.1016/j.jhazmat.2007.03.020
|
32 |
POLOWCZYK I, BASTRZYK A, KOŹLECKI T,et al. Use of fly ash agglomerates for removal of arsenic[J]. Environmental Geochemistry and Health, 2010, 32(4):361-366. doi: 10.1007/s10653-010-9306-x
|
33 |
JUNG C H, MATSUTO T, TANAKA N. Behavior of metals in ash melting and gasification-melting of municipal solid waste(MSW)[J]. Waste Management, 2005, 25(3):301-310. doi: 10.1016/j.wasman.2004.08.012
|
34 |
RAO M, PARWATE A V, BHOLE A G. Removal of Cr 6+ and Ni 2+ from aqueous solution using bagasse and fly ash[J]. Waste Management, 2002, 22(7):821-830. doi: 10.1016/s0956-053x(02)00011-9
|
35 |
LI Xianbo, YE Junjian, LIU Zhihong,et al. Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(Ⅱ) in aqueous solution[J]. Journal of Central South University, 2018, 25(1):9-20. doi: 10.1007/s11771-018-3712-0
|
36 |
|
|
HUANG Qinqin, LIU Guo, WEN Meiyan,et al. Controlling cadmium pollution with fly ash-bentonite cut-off wall[J]. Chinese Journal of Environmental Engineering, 2019, 13(3):652-663. doi: 10.12030/j.cjee.201808136
|
37 |
朱双,盛广宏,王铖铖,等. 粉煤灰/氧化石墨烯复合材料吸附Hg(Ⅱ)[J]. 环境工程学报,2017,11(3):1857-1864.
|
|
ZHU Shuang, SHENG Guanghong, WANG Chengcheng,et al. Adsorption of Hg(Ⅱ) ions on fly ash/graphene oxide composite[J]. Chinese Journal of Environmental Engineering,2017,11(3):1857-1864.
|
38 |
燕可翀,李子鹏,李杨敏,等. 粉煤灰碱熔-水热合成沸石用于水溶液中汞的吸附[J]. 硅酸盐通报,2020,39(12):3939-3944.
|
|
YAN Kechong, LI Zipeng, LI Yangmin,et al. Adsorption of mercury in aqueous solution by zeolite prepared from coal fly ash using alkali fusion-hydrothermal method[J]. Bulletin of the Chinese Ceramic Society,2020,39(12):3939-3944.
|
39 |
|
40 |
BANERJEE S S, JOSHI M V, JAYARAM R V. Removal of Cr(Ⅵ) and Hg(Ⅱ) from aqueous solutions using fly ash and impregnated fly ash[J]. Separation Science and Technology, 2005, 39(7):1611-1629. doi: 10.1081/ss-120030778
|
41 |
KAPOOR A, VIRARAGHAVAN T. Adsorption of mercury from wastewater by fly ash[J]. Adsorption Science & Technology, 1992, 9(3):130-147. doi: 10.1177/026361749200900302
|
42 |
LIU Minmin, HOU Lian, XI Beidou,et al. Synthesis,characterization,and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash[J]. Applied Surface Science, 2013, 273:706-716. doi: 10.1016/j.apsusc.2013.02.116
|
43 |
TAUANOV Z, SHAH D, ITSKOS G,et al. Optimized production of coal fly ash derived synthetic zeolites for mercury removal from wastewater[J]. IOP Conference Series:Materials Science and Engineering, 2017, 230:012044. doi: 10.1088/1757-899x/230/1/012044
|
44 |
PANDAY K K, PRASAD G, SINGH V N. Copper(Ⅱ) removal from aqueous solutions by fly ash[J]. Water Research, 1985, 19(7):869-873. doi: 10.1016/0043-1354(85)90145-9
|
45 |
APAK R, TÜTEM E, HÜGÜL M,et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes)[J]. Water Research, 1998, 32(2):430-440. doi: 10.1016/s0043-1354(97)00204-2
|
46 |
WANG Shaobin, TERDKIATBURANA T, TADÉ M O. Single and co-adsorption of heavy metals and humic acid on fly ash[J]. Separation and Purification Technology, 2008, 58(3):353-358. doi: 10.1016/j.seppur.2007.05.009
|
47 |
HSU T C, YU C C, YEH C M. Adsorption of Cu 2+ from water using raw and modified coal fly ashes[J]. Fuel, 2008, 87(7):1355-1359. doi: 10.1016/j.fuel.2007.05.055
|
48 |
|
|
ZHANG Xiaomin, LI Jin, LI Heng,et al. Weak acid treatment of coal fly ash cenospheres and the adsorptive removal of impurities in wastewaters of A beneficiation plant of lead-zinc sulphide ores[J]. Nonferrous Metals Engineering, 2020, 10(3):101-108. doi: 10.3969/j.issn.2095-1744.2020.03.016
|
49 |
HE Xinping, YAO Bing, XIA Yang,et al. Coal fly ash derived zeolite for highly efficient removal of Ni 2+ inwaste water[J]. Powder Technology, 2020, 367:40-46. doi: 10.1016/j.powtec.2019.11.037
|
50 |
甘永平,姚兵,贺馨平,等. 煤灰基沸石电场辅助吸附Ni2+研究[J]. 水处理技术,2021,47(1):32-36.
|
|
GAN Yongping, YAO Bing, HE Xinping,et al. Study on electric field assisted adsorption of Ni2+ by coal ash-based zeolite[J]. Technology of Water Treatment,2021,47(1):32-36.
|
51 |
BANERJEE S S, JAYARAM R V, JOSHI M V. Removal of nickel(Ⅱ) and zinc(Ⅱ) from wastewater using fly ash and impregnated fly ash[J]. Separation Science and Technology, 2003, 38(5):1015-1032. doi: 10.1081/ss-120018121
|
52 |
KOBAYASHI Y, OGATA F, SAENJUM C,et al. Removal of Pb 2+ from aqueous solutions using K-type zeolite synthesized from coal fly ash[J]. Water, 2020, 12(9):2375. doi: 10.3390/w12092375
|
53 |
HUANG Xunrong, ZHAO Hanghang, ZHANG Guibin,et al. Potential of removing Cd(Ⅱ) and Pb(Ⅱ) from contaminated water using a newly modified fly ash[J]. Chemosphere, 2020, 242:125148. doi: 10.1016/j.chemosphere.2019.125148
|
54 |
|
|
LUO Xin, AO Yanhuan, XU Dongyao,et al. Study on modification of fly ash and its adsorption of Pb(Ⅱ) from wastewater[J]. Applied Chemical Industry, 2019, 48(5):1020-1023. doi: 10.3969/j.issn.1671-3206.2019.05.007
|
55 |
李喜林,张颖,赵雪,等. 粉煤灰合成沸石吸附含铬废水中三价铬的研究[J]. 非金属矿,2017,40(5):93-95.
|
|
LI Xilin, ZHANG Ying, ZHAO Xue,et al. Study on adsorption of trivalent chromium-containing wastewater by zeolite synthesized from coal fly ash[J]. Non-Metallic Mines,2017,40(5):93-95.
|
56 |
JIANG Xiaoling, FAN Wenqiang, LI Chunqing,et al. Removal of Cr(Ⅵ) from wastewater by a two-step method of oxalic acid reduction-modified fly ash adsorption[J]. RSC Advances, 2019, 9(58):33949-33956. doi: 10.1039/c9ra05980f
|
57 |
|
|
CHENG Junwei, HUANG Mingqin, CAI Shenwen. Research on removal of chromium(Ⅵ) from waste water on fly ash modified with alkali washing and calcium oxide calcining method[J]. Multipurpose Utilization of Mineral Resources, 2022(1):184-189. doi: 10.3969/j.issn.1000-6532.2022.01.026
|
58 |
滕菲,张海燕,齐立强. 微波联合碱改性粉煤灰对铬(Ⅵ)的吸附性能[J]. 矿产保护与利用,2019,39(4):26-31.
|
|
TENG Fei, ZHANG Haiyan, QI Liqiang. Research on the adsorption performance of microwave combined with alkali modified fly ash for Cr(Ⅵ)[J]. Conservation and Utilization of Mineral Resources,2019,39(4):26-31.
|
59 |
PANDAY K K, PRASAD G, SINGH V N. Removal of Cr(Ⅵ) from aqueous solutions by adsorption on fly ash-wollastonite[J]. Journal of Chemical Technology and Biotechnology Chemical Technology, 2007, 34(7):367-374. doi: 10.1002/jctb.5040340703
|
60 |
BHATTACHARYA A K, NAIYA T K, MANDAL S N,et al. Adsorption,kinetics and equilibrium studies on removal of Cr(Ⅵ) from aqueous solutions using different low-cost adsorbents[J]. Chemical Engineering Journal,2008,137(3):529-541.
|
61 |
PATTANAYAK J, MONDAL K, MATHEW S,et al. A parametric evaluation of the removal of As(Ⅴ) and As(Ⅲ) by carbon-based adsorbents[J]. Carbon, 2000, 38(4):589-596. doi: 10.1016/s0008-6223(99)00144-x
|
62 |
SONI R, SHUKLA D P. Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal[J]. Chemosphere, 2019, 219:504-509. doi: 10.1016/j.chemosphere.2018.11.203
|
63 |
ULATOWSKA J, POLOWCZYK I, SAWIŃSKI W,et al. Use of fly ash and fly ash agglomerates for As(Ⅲ) adsorption from aqueous solution[J]. Polish Journal of Chemical Technology, 2014, 16(1):21-27. doi: 10.2478/pjct-2014-0004
|
64 |
DIAMADOPOULOS E, IOANNIDIS S, SAKELLAROPOULOS G P. As(Ⅴ) removal from aqueous solutions by fly ash[J]. Water Research, 1993, 27(12):1773-1777. doi: 10.1016/0043-1354(93)90116-y
|
65 |
ZHANG Kaihua, ZHANG Dongxue, ZHANG Kai. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2016, 73(8):1954-1962. doi: 10.2166/wst.2016.028
|
66 |
LI Yi, ZHANG Fushen, XIU Furong. Arsenic(Ⅴ) removal from aqueous system using adsorbent developed from a high iron-containing fly ash[J]. Science of the Total Environment, 2009, 407(21):5780-5786. doi: 10.1016/j.scitotenv.2009.07.017
|
67 |
AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3):327-363. doi: 10.1016/j.pecs.2009.11.003
|
68 |
FEBRIANTO J, KOSASIH A N, SUNARSO J,et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:A summary of recent studies[J]. Journal of Hazardous Materials, 2009, 162(2/3):616-645. doi: 10.1016/j.jhazmat.2008.06.042
|
69 |
EL-KHAIARY M I. Least-squares regression of adsorption equilibrium data:Comparing the options[J]. Journal of Hazardous Materials, 2008, 158(1):73-87. doi: 10.1016/j.jhazmat.2008.01.052
|
70 |
ANASTOPOULOS I, KYZAS G Z. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?[J]. Journal of Molecular Liquids, 2016, 218:174-185. doi: 10.1016/j.molliq.2016.02.059
|
71 |
QIU Qili, JIANG Xuguang, Guojun LÜ,et al. Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process[J]. Journal of Material Cycles and Waste Management, 2019, 21(3):469-477. doi: 10.1007/s10163-018-0806-6
|