1 |
工业和信息化部. 国家集成电路产业发展推进纲要[Z]. 2014.
|
2 |
国务院. 新时期促进集成电路产业和软件产业高质量发展的若干政策[Z]. 2020.
|
3 |
国家统计局. 国民经济和社会发展统计公报[R].2021.
|
4 |
中国半导体行业协会. 中国集成电路产业运行情况[R].2021.
|
5 |
WANG Qi, HUANG Nan, CHEN Zhuo,et al. Environmental data and facts in the semiconductor manufacturing industry:An unexpected high water and energy consumption situation[J]. Water Cycle, 2023, 4:47-54. doi: 10.1016/j.watcyc.2023.01.004
|
6 |
工业和信息化部,国家发展改革委,科技部,等. 工业废水循环利用实施方案[Z]. 2021.
|
7 |
|
8 |
|
|
|
9 |
ZHU Ping, CAO Zhenbang, WANG Liangyou,et al. Recycling of calcium fluoride sludge as ceramic material using low temperature sintering technology[J]. Journal of Material Cycles and Waste Management, 2014, 16(1):156-161. doi: 10.1007/s10163-013-0138-5
|
10 |
WON C H, CHOI J, CHUNG J. Evaluation of optimal reuse system for hydrofluoric acid wastewater[J]. Journal of Hazardous Materials, 2012, 239/240:110-117. doi: 10.1016/j.jhazmat.2012.08.004
|
11 |
TSENG S F, LO C M, HUNG C H. Recycling of dicing and grinding wastewater generated by IC packaging and testing factories:A case study using UF membrane technology[J]. Journal of Water Process Engineering, 2019, 32:100937. doi: 10.1016/j.jwpe.2019.100937
|
12 |
SU Y N, LIN W S, HOU C H,et al. Performance of integrated membrane filtration and electrodialysis processes for copper recovery from wafer polishing wastewater[J]. Journal of Water Process Engineering, 2014, 4:149-158. doi: 10.1016/j.jwpe.2014.09.012
|
13 |
SONG J B, KIM K L, YANG D,et al. High-T-c superconducting high gradient magnetic separator using solid nitrogen cooling system for purification of CMP wastewater[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):3700505. doi: 10.1109/tasc.2013.2255950
|
14 |
RYU H D, LIM C S, KANG M K,et al. Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage[J]. Journal of Hazardous Materials, 2012, 221/222:248-255. doi: 10.1016/j.jhazmat.2012.04.038
|
15 |
MOUSSET E, WANG Zuxin, OLVERA-VARGAS H,et al. Advanced electrocatalytic pre-treatment to improve the biodegradability of real wastewater from the electronics industry:A detailed investigation study[J]. Journal of Hazardous Materials, 2018, 360:552-559. doi: 10.1016/j.jhazmat.2018.08.023
|
16 |
LIANG Yingchang, DAVEREY A, HUANG Y T,et al. Treatment of semiconductor wastewater using single-stage partial nitrification and anammox in a pilot-scale reactor[J]. Journal of the Institute of Chemical Engineers, 2016, 63:236-242. doi: 10.1016/j.jtice.2016.02.036
|
17 |
LI Xiang, YUAN Yan, HUANG Yong,et al. Simultaneous removal of ammonia and nitrate by coupled S 0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater[J]. Science of the Total Environment, 2019, 661:235-242. doi: 10.1016/j.scitotenv.2019.01.164
|
18 |
HUANG Haiming, LIU Jiahui, ZHANG Peng,et al. Investigation on the simultaneous removal of fluoride,ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chemical Engineering Journal, 2017, 307:696-706. doi: 10.1016/j.cej.2016.08.134
|
19 |
HASEBE Y, MEGURO H, KANAI Y,et al. High-rate nitrification of electronic industry wastewater by using nitrifying granules[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2017, 76(11/12):3171-3180. doi: 10.2166/wst.2017.431
|
20 |
ENG C Y, YAN Dongning, WITHANAGE N,et al. Wastewater treatment and recycle from a semiconductor industry:A demo-plant study[J]. Water Practice and Technology, 2019, 14(2):371-379. doi: 10.2166/wpt.2019.020
|
21 |
CHUNG S, CHUNG J, CHUNG C. Enhanced electrochemical oxidation process with hydrogen peroxide pretreatment for removal of high strength ammonia from semiconductor wastewater[J]. Journal of Water Process Engineering, 2020, 37:101425. doi: 10.1016/j.jwpe.2020.101425
|
22 |
CHUNG J, FLEEGE D, ONG S K,et al. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system[J]. Environmental Technology, 2014, 35(21/22/23/24):2837-2845. doi: 10.1080/09593330.2014.924565
|
23 |
CHANG Datian, PARK D, ZHU Junjie,et al. Assessment of an MnCe-GAC treatment process for tetramethylammonium-contaminated wastewater from optoelectronic industries[J]. Applied Sciences, 2019, 9(21):4578. doi: 10.3390/app9214578
|
24 |
|
|
ZHU Junqiao. Processes design and practice of wastewater reclamation and reuse project for electronic and photovoltaic industries in Taihu Lake basin[J]. Water Purification Technology, 2015, 34(3):82-85. doi: 10.3969/j.issn.1009-0177.2015.03.018
|
25 |
朱加豆,江宇,洪耀良,等. 三星半导体公司闪存芯片生产废水处理工程[J]. 中国给水排水,2018,34(10):105-109.
|
|
ZHU Jiadou, JIANG Yu, HONG Yaoliang,et al. Flash memory chip wastewater treatment project of samsung semiconductor company[J]. China Water & Wastewater,2018,34(10):105-109.
|
26 |
|
|
ZHENG Jiachuan. Fluoride-containing wastewater treatment project in semiconductor plant wastewater[J]. Guangdong Chemical Industry, 2021, 48(3):96-97. doi: 10.3969/j.issn.1007-1865.2021.03.039
|
27 |
尹晓峰,刘金玲,韩志强,等. 300 mm芯片半导体厂废水处理工程实例[C]// 《环境工程》2019年全国学术年会论文集(下册). 北京,2019:248-252.
|
28 |
肖燕,陈彤,胡永健,等. 面向半导体废水回用处理的MBR-RO组合工艺可行性[J]. 水处理技术,2013,39(2):102-106,111.
|
|
XIAO Yan, CHEN Tong, HU Yongjian,et al. Feasibility of semiconductor wastewater reclamation by using MBR-RO process[J]. Technology of Water Treatment,2013,39(2):102-106,111.
|
29 |
|
|
WANG Chundong, ZHANG Yunxiu, XU Ming,et al. Study on treatment of cupriferous wastewater by micro-electrolysis process in semiconductor industry[J]. Environmental Science and Management, 2014, 39(3):106-108. doi: 10.3969/j.issn.1673-1212.2014.03.029
|
30 |
|
|
WANG Chundong, LI Xiaohua, MENG Shuangshuang. Engineering application on treatment of cupriferous wastewater in 300 mm semiconductor factory[J]. Environmental Science and Technology, 2017, 30(4):39-41. doi: 10.3969/j.issn.1674-4829.2017.04.008
|
31 |
|
|
SONG Zhiyun, WANG Min, HUANG Panfeng. Engineering practice of MBR membrane for treating wastewater from semiconductor industry[J]. Scientific and Technological Innovation, 2019(8):53-54. doi: 10.3969/j.issn.1673-1328.2019.08.032
|
32 |
彭丙瑞. 化学沉淀-混凝法处理电子工业含砷氟废水试验研究[D]. 北京:北京林业大学,2019.
|
|
PENG Bingrui .Study on chemical precipitation-coagulation treatment of arsenic and fluoride-contained wastewater from electrical industry[D].Beijing:Beijing Forestry University,2019.
|
33 |
罗峥,顾雨辰. 两级混凝沉淀工艺处理某电子芯片厂含氟废水的工程实例[J]. 科技创新与应用,2017(9):58-59.
|
|
LUO Zheng, GU Yuchen. An engineering example of treating fluorine-containing wastewater in an electronic chip factory by two-stage coagulation and sedimentation process[J]. Technology Innovation and Application,2017(9):58-59.
|
34 |
黄攀峰,应晓芳,王春冬. 半导体行业含氨-双氧水废水中双氧水的去除研究[J]. 数码设计,2017,6(6):112-113.
|
|
HUANG Panfeng, YING Xiaofang, WANG Chundong. A kind of containing hydrogen peroxide waste water treatment process in semiconductor industry[J]. Peak Data Science,2017,6(6):112-113.
|
35 |
郭莉,李杨,李旭鹏,等. 半导体厂酸性含氟生产废水处理系统[J]. 环境工程,2016,34(S1):247-249.
|
|
GUO Li, LI Yang, LI Xupeng,et al. Treatment system of acidic fluorine-containing production wastewater in semiconductor factory[J]. Environmental Engineering,2016,34(S1):247-249.
|
36 |
PENG Cong, CHAI Liyuan, TANG Chongjian,et al. Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation:A comparative research[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2):325-333. doi: 10.1002/jctb.5009
|
37 |
KIM Y G, SONG J B, YANG D G,et al. Purification of chemical mechanical polishing wastewater via superconducting high gradient magnetic separation system with optimal coagulation process[J]. IEEE Transactions on Applied Superconductivity,2015,25(3):3700205.
|
38 |
PRAHAS D, LIU J C, ISMADJI S,et al. Adsorption of tetramethylammonium hydroxide on activated carbon[J]. Journal of Environmental Engineering, 2012, 138(3):232-238. doi: 10.1061/(asce)ee.1943-7870.0000482
|
39 |
YANG Benqin,OH H, LEE Y,et al. Low-strength electronic wastewater treatment using immobilized cells of TMAH-degrading bacterium followed by activated carbon adsorption[J]. Desalination and Water Treatment, 2015, 54(13):3639-3645. doi: 10.1080/19443994.2014.923192
|
40 |
CHANG Shenteng, LIN K Y A, LU C. Efficient adsorptive removal of Tetramethylammonium hydroxide(TMAH) from water using graphene oxide[J]. Separation and Purification Technology, 2014, 133:99-107. doi: 10.1016/j.seppur.2014.06.050
|
41 |
LEE C H, LIN Hangyi, CADOGAN E I,et al. Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(Ⅲ) ions from Aqueous Solution[J]. Polish Journal of Chemical Technology, 2015, 17(3):124-132. doi: 10.1515/pjct-2015-0060
|
42 |
BANG S, CHOI J W, CHO K,et al. Simultaneous reduction of copper and toxicity in semiconductor wastewater using protonated alginate beads[J]. Chemical Engineering Journal, 2016, 288:525-531. doi: 10.1016/j.cej.2015.12.025
|
43 |
LI Rui, SIRIWARDENA D, SPEED D,et al. Treatment of azole-containing industrial wastewater by the Fenton process[J]. Industrial & Engineering Chemistry Research, 2021, 60(27):9716-9728. doi: 10.1021/acs.iecr.1c00976
|
44 |
BELLOTINDOS L M, LU M H, METHATHAM T,et al. Factors affecting degradation of dimethyl sulfoxide(DMSO) by fluidized-bed fenton process[J]. Environmental Science and Pollution Research, 2014, 21(24):14158-14165. doi: 10.1007/s11356-014-3320-y
|
45 |
CHUNG J, KIM M, CHAE S R,et al. Treatment and reuse of electronic wastewater using activated carbon based solid-phase advanced oxidation process[J]. Desalination and Water Treatment, 2015, 54(4/5):1038-1043. doi: 10.1080/19443994.2014.895783
|
46 |
AOUDJ S, KHELIFA A, ZEMMOURI H,et al. Degradation of EDTA in H 2O 2-containing wastewater by photo-electrochemical peroxidation[J]. Chemosphere, 2018, 208:984-990. doi: 10.1016/j.chemosphere.2018.06.053
|
47 |
CHANG Chenyu, HSIEH Y H. Degradation of semiconductor manufacturing wastewater by using a novel magnetic composite TiO 2/Fe 3O 4 photoreactor design[J]. Journal of Nanomaterials, 2012, 2012:413542. doi: 10.1155/2012/413542
|
48 |
KIM T K, KIM T, LEE I,et al. Removal of tetramethylammonium hydroxide(TMAH) in semiconductor wastewater using the nano-ozone H 2O 2 process[J]. Journal of Hazardous Materials, 2021, 409:123759. doi: 10.1016/j.jhazmat.2020.123759
|
49 |
AOUDJ S, KHELIFA A, DROUICHE N. Removal of fluoride,SDS,ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation[J]. Chemosphere, 2017, 180:379-387. doi: 10.1016/j.chemosphere.2017.04.045
|
50 |
AOUDJ S, KHELIFA A, DROUICHE N,et al. Simultaneous removal of chromium(Ⅵ) and fluoride by electrocoagulation-electroflotation:Application of a hybrid Fe-Al anode[J]. Chemical Engineering Journal, 2015, 267:153-162. doi: 10.1016/j.cej.2014.12.081
|
51 |
OUSLIMANE T, AOUDJ S, AMARA M,et al. Removal of copper and fluoride from mixed Cu-CMP and fluoride-bearing wastewaters by electrocoagulation[J]. International Journal of Environmental Research, 2017, 11(5):677-684. doi: 10.1007/s41742-017-0058-7
|
52 |
CHENG H H, LIU Chengbing, LEI Yuanyuan,et al. Biological treatment of DMSO-containing wastewater from semiconductor industry under aerobic and methanogenic conditions[J]. Chemosphere, 2019, 236:124291. doi: 10.1016/j.chemosphere.2019.07.022
|
53 |
INNOCENZI V, ZUEVA S B, VEGLIÒ F,et al. Pilot-scale experiences with aerobic treatment and chemical processes of industrial wastewaters from electronics and semiconductor industry[J]. Energies, 2021, 14(17):5340. doi: 10.3390/en14175340
|
54 |
CHOI H, KIM J, LEE C. Enhancement of methanogenic biodegradation of tetramethylammonium hydroxide wastewater by co-digestion with ethyl lactate wastewater[J]. Environmental Technology & Innovation, 2021, 21:101372. doi: 10.1016/j.eti.2021.101372
|
55 |
WANG Xiaoyu, BUER Gude, FAN Wei,et al. Copper removal from semiconductor CMP wastewater in the presence of nano-SiO 2 through biosorption[J]. Journal of Water Reuse and Desalination, 2021, 11(2):289-300. doi: 10.2166/wrd.2021.098
|
56 |
LIN Minfa, WU J L, CHANG Kenlin,et al. Recycle of synthetic calcium fluoride and waste sulfuric acid to produce electronic grade hydrofluoric acid[J]. Environmental Science and Pollution Research, 2021, 28(30):40633-40639. doi: 10.1007/s11356-020-09867-x
|
57 |
TORTORA F, INNOCENZI V, PRISCIANDARO M,et al. Removal of tetramethyl ammonium hydroxide from synthetic liquid wastes of electronic industry through micellar enhanced ultrafiltration[J]. Journal of Dispersion Science and Technology, 2018, 39(2):207-213. doi: 10.1080/01932691.2017.1307760
|
58 |
WANG Yaoming, ZHANG Zenghui, JIANG Chenxiao,et al. Electrodialysis process for the recycling and concentrating of tetramethylammonium hydroxide(TMAH) from photoresist developer wastewater[J]. Industrial & Engineering Chemistry Research, 2013, 52(51):18356-18361. doi: 10.1021/ie4023995
|
59 |
MARTIN N,YA V, LEEWIBOONSILP N,et al. Electrochemical crystallization for phosphate recovery from an electronic industry wastewater effluent using sacrificial iron anodes[J]. Journal of Cleaner Production, 2020, 276:124234. doi: 10.1016/j.jclepro.2020.124234
|
60 |
BAYON L L E, BALLESTEROS F C, GARCIA-SEGURA S,et al. Water reuse nexus with resource recovery:On the fluidized-bed homogeneous crystallization of copper and phosphate from semiconductor wastewater[J]. Journal of Cleaner Production, 2019, 236:117705. doi: 10.1016/j.jclepro.2019.117705
|
61 |
BAYON L L E, BALLESTEROS F C, CHOI A E S,et al. Remediation of cobalt from semiconductor wastewater in the frame of fluidized-bed homogeneous granulation process[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105936. doi: 10.1016/j.jece.2021.105936
|
62 |
|
|
WANG Chundong, LI Zhenghua, YING Xiaofang. Treatment and reuse of semiconductor wastewater by UF-RO process[J]. Industrial Water & Wastewater, 2019, 50(5):75-77. doi: 10.3969/j.issn.1009-2455.2019.05.018
|
63 |
韩永萍,张元,李可意,等. 高矿化度电子废水MBR处理产水的污染特性[J]. 膜科学与技术,2016,36(5):81-86.
|
|
HAN Yongping, ZHANG Yuan, LI Keyi,et al. Fouling propensity of effluent from the MBR system for the electronics wastewater with high salinity[J]. Membrane Science and Technology,2016,36(5):81-86.
|
64 |
JIANG Shanxue, LI Yuening, LADEWIG B P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of The Total Environment, 2017, 595:567-583. doi: 10.1016/j.scitotenv.2017.03.235
|