1 |
王娟. 基于硫铁基质自养反硝化去除水中硝酸盐氮的研究[D]. 大连:大连理工大学,2021.
|
|
WANG Juan. Removal of nitrate from water by autotrophic denitrification based on sulfur and iron substrates[D]. Dalian:Dalian University of Technology,2021.
|
2 |
WANG Wei, WEI Dongyang, LI Fuchang,et al. Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal:From feasibility to pilot experiments[J]. Water Research, 2019, 160:52-59. doi: 10.1016/j.watres.2019.05.054
|
3 |
霍珊. 基于S-Fe氧化的自养反硝去除水中NO3 --N的研究[D]. 北京:北京化工大学,2016.
|
|
HUO Shan. S-Fe oxidizing autotrophic denitrification for nitrate removal from water[D]. Beijing:Beijing University of Chemical Technology,2016.
|
4 |
|
|
ZHU Yishuang. The effect of iron-bearing minerals on denitrification in urban river[D]. Shanghai:East China Normal University, 2019. doi: 10.1134/s0514749219060259
|
5 |
班亚飞. 污水处理厂尾水自养反硝化深度脱氮工艺研究[D]. 郑州:郑州大学,2020.
|
|
BAN Yafei. Study on deep denitrification of tail water in sewage treatment plant by autotrophic denitrification process[D]. Zhengzhou:Zhengzhou University,2020.
|
6 |
周翔. 硫铁矿物自养反硝化特性研究[D]. 大连:大连理工大学,2019.
|
|
ZHOU Xiang. Study on the characteristics of autotrophic denitrification with sulfurous iron ore as substrate[D]. Dalian:Dalian University of Technology,2019.
|
7 |
WANG Jiaojiao, HUANG Baocheng, LI Jun,et al. Advances and challenges of sulfur-driven autotrophic denitrification(SDAD) for nitrogen removal[J]. Chinese Chemical Letters, 2020, 31(10):2567-2574. doi: 10.1016/j.cclet.2020.07.036
|
8 |
邹卓成. 生物电化学氢自养和硫自养耦合脱氮工艺及其微生物种群结构研究[D]. 武汉:武汉大学,2017.
|
|
ZOU Zhuocheng. Research on the coupled bioelectrochemical hydrogen autotrophic denitrification with sulfur autotrophic denitrification technology and the microbial community structure[D]. Wuhan:Wuhan University,2017.
|
9 |
CHEN Fangmin, LI Xiang, GU Chenwei,et al. Selectivity control of nitrite and nitrate with the reaction of S 0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process[J]. Bioresource Technology, 2018, 266:211-219. doi: 10.1016/j.biortech.2018.06.062
|
10 |
ZHU Tingting, CHENG Haoyi, YANG Lihui,et al. Coupled sulfur and iron(Ⅱ) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal[J]. Environmental Science & Technology, 2019, 53(3):1545-1554. doi: 10.1021/acs.est.8b06865
|
11 |
KANAPARTHI D, POMMERENKE B, CASPER P,et al. Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3[J]. The ISME Journal, 2013, 7(8):1582-1594. doi: 10.1038/ismej.2013.38
|
12 |
ZHANG Yongwei, WEI Dongyang, MORRISON L,et al. Nutrient removal through pyrrhotite autotrophic denitrification:Implications for eutrophication control[J]. Science of the Total Environment, 2019, 662:287-296. doi: 10.1016/j.scitotenv.2019.01.230
|
13 |
WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764. doi: 10.1038/nrmicro1490
|
14 |
LI Ruihua, GUAN Mengsha, WANG Wei. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification[J]. Water Research, 2021, 189:116662. doi: 10.1016/j.watres.2020.116662
|
15 |
LU Xiejuan, WAN Yanlei, ZHONG Zhenxing,et al. Integrating sulfur,iron(Ⅱ),and fixed organic carbon for mixotrophic denitrification in a composite filter bed reactor for decentralized wastewater treatment:Performance and microbial community[J]. Science of the Total Environment, 2021, 795:148825. doi: 10.1016/j.scitotenv.2021.148825
|
16 |
WEISS J V, RENTZ J A, PLAIA T,et al. Characterization of neutrophilic Fe(Ⅱ)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov.,and S ideroxydans paludicola sp. nov[J]. Geomicrobiology Journal, 2007, 24(7/8):559-570. doi: 10.1080/01490450701670152
|
17 |
WAN Dongjin, LIU Yongde, WANG Yiyi,et al. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor:Kinetics and bacterial community structure[J]. Water Research, 2017, 108:280-292. doi: 10.1016/j.watres.2016.11.003
|
18 |
LI Ruihua, WEI Dongyang, WANG Wei,et al. Pyrrhotite-sulfur autotrophic denitrification for deep and efficient nitrate and phosphate removal:Synergistic effects,secondary minerals and microbial community shifts[J]. Bioresource Technology, 2020, 308:123302. doi: 10.1016/j.biortech.2020.123302
|
19 |
HAN Fei, ZHANG Mengru, SHANG Hongguo,et al. Microbial community succession,species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater[J]. Bioresource Technology, 2020, 315:123826. doi: 10.1016/j.biortech.2020.123826
|
20 |
BLÖTHE M, RODEN E E. Composition and activity of an autotrophic Fe(Ⅱ)-oxidizing,nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology, 2009, 75(21):6937-6940. doi: 10.1128/aem.01742-09
|
21 |
WANG Ru, YANG Cheng, ZHANG Meng,et al. Chemoautotrophic denitrification based on ferrous iron oxidation:Reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313:693-701. doi: 10.1016/j.cej.2016.12.052
|
22 |
ZHANG Jianhua, ZHANG Liang, MIAO Yuanyuan,et al. Enhancing sewage nitrogen removal via anammox and endogenous denitrification:Significance of anaerobic/oxic/anoxic operation mode[J]. Bioresource Technology, 2019, 289:121665. doi: 10.1016/j.biortech.2019.121665
|