1 |
HAMOOD ALTOWAYTI W ALI, SHAHIR S, OTHMAN N,et al. The role of conventional methods and artificial intelligence in the wastewater treatment:A comprehensive review[J]. Processes, 2022, 10(9):1832. doi: 10.3390/pr10091832
|
2 |
GĘCA M, WIŚNIEWSKA M, NOWICKI P. Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems:A review[J]. Advances in Colloid and Interface Science, 2022, 305:102687. doi: 10.1016/j.cis.2022.102687
|
3 |
ESTEVES B M, FERNANDES R, MORALES-TORRES S,et al. Integration of catalytic wet peroxidation and membrane distillation processes for olive mill wastewater treatment and water recovery[J]. Chemical Engineering Journal, 2022, 448:137586. doi: 10.1016/j.cej.2022.137586
|
4 |
GUTIERREZ-URBANO I, VILLEN-GUZMAN M, PEREZ-RECUERDA R,et al. Removal of polycyclic aromatic hydrocarbons(PAHs) in conventional drinking water treatment processes[J]. Journal of Contaminant Hydrology, 2021, 243:103888. doi: 10.1016/j.jconhyd.2021.103888
|
5 |
DONG Guihua, CHEN Bing, LIU Bo,et al. Advanced oxidation processes in microreactors for water and wastewater treatment:Development,challenges,and opportunities[J]. Water Research, 2022, 211:118047. doi: 10.1016/j.watres.2022.118047
|
6 |
BO Yanan, GAO Chao, XIONG Yujie. Recent advances in engineering active sites for photocatalytic CO 2 reduction[J]. Nanoscale, 2020, 12(23):12196-12209. doi: 10.1039/d0nr02596h
|
7 |
ZHANG Botao, ZHANG Yang, XIANG Weixu,et al. Comparison of the catalytic performances of different commercial cobalt oxides for peroxymonosulfate activation during dye degradation[J]. Chemical Research in Chinese Universities, 2017, 33(5):822-827. doi: 10.1007/s40242-017-6413-6
|
8 |
SUN Wanjun, ZHU Jiayu, ZHANG Meiyu,et al. Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting,CO 2 reduction,and N 2 fixation[J]. Chinese Journal of Catalysis, 2022, 43(9):2273-2300. doi: 10.1016/s1872-2067(21)63939-6
|
9 |
KHALID H, HAQ A U, RAZA NAQVI S ALI,et al. Enhancement of photocatalytic activity of Ba-doped CoO for degradation of emamectin benzoate in aqueous solution[J]. Environmental Monitoring and Assessment, 2023, 195(10):1245. doi: 10.1007/s10661-023-11864-9
|
10 |
LIU Tongyao, BAI Liqi, TIAN Na,et al. Interfacial engineering in two-dimensional heterojunction photocatalysts[J]. International Journal of Hydrogen Energy, 2023, 48(33):12257-12287. doi: 10.1016/j.ijhydene.2022.12.121
|
11 |
NASIR M, IRNAMERIA D, ZULFIKAR M A. Synthesis and characterization of novel TiO 2-ZnO-CoO nanocomposite photocatalyst for photodegradation of methylene blue dye[J]. IOP Conference Series:Earth and Environmental Science, 2017, 60:012015. doi: 10.1088/1755-1315/60/1/012015
|
12 |
ZHANG Wenqiang, SHI Weilong, SUN Haoran,et al. Fabrication of ternary CoO/g-C 3N 4/Co 3O 4 nanocomposite with p-n-p type heterojunction for boosted visible-light photocatalytic performance[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(7):1854-1863. doi: 10.1002/jctb.6703
|
13 |
DAN Jiabin, WANG Qiongfang, RAO Pinhua,et al. Bimetallic oxides with package structure for enhanced degradation of bisphenol A through peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 429:132189. doi: 10.1016/j.cej.2021.132189
|
14 |
XIANG Weiming, JI Qiuyi, XU Chenmin,et al. Accelerated photocatalytic degradation of iohexol over Co 3O 4/g-C 3N 4/Bi 2O 2CO 3 of p-n/n-n dual heterojunction under simulated sunlight by persulfate[J]. Applied Catalysis B:Environmental, 2021, 285:119847. doi: 10.1016/j.apcatb.2020.119847
|
15 |
CHENG H H, CHEN S S, YANG S Y,et al. Sol-gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N codoped TiO₂ catalysts[J]. Materials, 2018, 11(6):939. doi: 10.3390/ma11060939
|
16 |
CHEN Liuyun, XIE Xinling, SU Tongming,et al. Co 3O 4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production:Co-S bond as a bridge for electron transfer[J]. Applied Surface Science, 2021, 567:150849. doi: 10.1016/j.apsusc.2021.150849
|
17 |
NOOR S, SAJJAD S, LEGHARI S A K,et al. Efficient electrochemical hydrogen evolution reaction and solar activity via bi-functional GO/Co 3O 4-TiO 2 nano hybrid structure[J]. International Journal of Hydrogen Energy, 2020, 45(35):17410-17421. doi: 10.1016/j.ijhydene.2020.04.240
|
18 |
DONG Jianing, ZHANG Xinnan, DONG Xiuli,et al. Coupled porosity and heterojunction engineering:MOF-derived porous Co 3O 4 embedded on TiO 2 nanotube arrays for water remediation[J]. Chemosphere, 2021, 274:129799. doi: 10.1016/j.chemosphere.2021.129799
|
19 |
LIN Lihua, LIN Zhiyou, ZHANG Jian,et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting[J]. Nature Catalysis, 2020, 3:649-655. doi: 10.1038/s41929-020-0476-3
|
20 |
毛娜. Co3O4/g-C3N4复合材料的制备及光催化降解甲基橙[J]. 功能材料,2017,48(7):57-61.
|
|
MAO Na. Preparation of cobaltosic oxide modified g-C3N4 and photo-catalytic degradation of methyl orange[J]. Journal of Functional Materials,2017,48(7):57-61.
|
21 |
JIN Chongyue, WANG Min, LI Zhilin,et al. Two dimensional Co 3O 4/g-C 3N 4 Z-scheme heterojunction:Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance[J]. Chemical Engineering Journal, 2020, 398:125569. doi: 10.1016/j.cej.2020.125569
|
22 |
ZHAO W, LI J, SHE T,et al. Study on the photocatalysis mechanism of the Z-scheme cobalt oxide nanocubes/carbon nitride nanosheets heterojunction photocatalyst with high photocatalytic performances[J]. Journal of Hazardous Materids, 2021, 402:123839. doi: 10.1016/j.jhazmat.2020.123839
|
23 |
YU Bo, MENG Fanming, KHAN M W,et al. Synthesis of hollow TiO 2@g-C 3N 4/Co 3O 4 core-shell microspheres for effective photooxidation degradation of tetracycline and MO[J]. Ceramics International, 2020, 46(9):13133-13143. doi: 10.1016/j.ceramint.2020.02.087
|
24 |
PALANISAMY G, BHUVANESWARI K, SRINIVASAN M,et al. Two-dimensional g-C 3N 4 nanosheets supporting Co 3O 4-V 2O 5 nanocomposite for remarkable photodegradation of mixed organic dyes based on a dual Z-scheme photocatalytic system[J]. Diamond and Related Materials, 2021, 118:108540. doi: 10.1016/j.diamond.2021.108540
|
25 |
ZHANG Wenqiang, SHI Weilong, SUN Haoran,et al. Fabrication of ternary CoO/g-C 3N 4/Co 3O 4 nanocomposite with p-n-p type heterojunction for boosted visible-light photocatalytic performance[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(7):1854-1863. doi: 10.1002/jctb.6703
|
26 |
WANG Yile, YU Dan, WANG Wei,et al. Synthesizing Co 3O 4-BiVO 4/g-C 3N 4 heterojunction composites for superior photocatalytic redox activity[J]. Separation and Purification Technology, 2020, 239:116562. doi: 10.1016/j.seppur.2020.116562
|
27 |
GONÇALVES N P F, PAGANINI M C, ARMILLOTTA P,et al. The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation[J]. Journal of Environmental Chemical Engineering, 2019, 7(6):103475. doi: 10.1016/j.jece.2019.103475
|
28 |
彭美兰,李智姗,张肖鑫 等. 原位析出制备固体氧化物电解池的“氧化铈-金属-钙钛矿”复合阴极材料[J]. 硅酸盐学报,2023,51(4):1015-1024.
|
|
PENG Meilan, LI Zhishan, ZHANG Xiaoxin,et al. In-situ exsolution of cerium oxide metal perovskite composite cathode for solid oxide electrolysis cell[J]. Journal of the Chinese Ceramic Society,2023,51(4):1015-1024.
|
29 |
YANG Qilei, LIU Guilong, LIU Yuan. Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts:A review[J]. Industrial & Engineering Chemistry Research, 2018, 57(1):1-17. doi: 10.1021/acs.iecr.7b03251
|
30 |
牛紫嫣,郭世龙,乔枫瑞,等. LaCoO3钙钛矿型催化剂的制备及其光催化降解盐酸四环素的研究[J]. 现代化工,2023,43(3):163-170.
|
|
NIU Ziyan, GUO Shilong, QIAO Fengrui,et al. Preparation of LaCoO3 perovskite catalyst and its application in photocatalytic degradation of tetracycline hydrochloride[J]. Modern Chemical Industry,2023,43(3):163-170.
|
31 |
|
|
GAO Wenwen, GONG Ying, YAN Long,et al. Heterogeneous Fenton reaction for degradation of semi-coking waste water over perovskite-type LaCoO 3 catalyst[J]. Industrial Catalysis, 2017, 25(3):71-75. doi: 10.3969/j.issn.1008-1143.2017.03.014
|
32 |
李江,卫芝贤,陈志敏. LaCoO3光催化降解孔雀绿染料的研究[J]. 应用化工,2007,36(10):986-988.
|
|
LI Jiang, WEI Zhixian, CHEN Zhimin. Study on the photocatalytic degradation of malachite green dye by LaCoO3 [J]. Applied Chemical Industry,2007,36(10):986-988.
|
33 |
MADI M, TAHIR M. Highly stable LaCoO 3 perovskite supported g-C 3N 4 nanotextures with proficient charges migration for visible light CO 2 photoreduction to CO and CH 4 [J]. Materials Science in Semiconductor Processing, 2022, 142:106517. doi: 10.1016/j.mssp.2022.106517
|
34 |
JIN Zehua, HU Ruisheng, WANG Hongye,et al. One-step impregnation method to prepare direct Z-scheme LaCoO 3/g-C 3N 4 heterojunction photocatalysts for phenol degradation under visible light[J]. Applied Surface Science, 2019, 491:432-442. doi: 10.1016/j.apsusc.2019.06.143
|
35 |
SHAH P, UNNARKAT A P, PATEL F,et al. A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation[J]. Process Safety and Environmental Protection, 2022, 161:703-722. doi: 10.1016/j.psep.2022.03.030
|
36 |
AGÚ U A, MENDIETA S N, GERBALDO M V,et al. Highly active heterogeneous Fenton-like system based on cobalt ferrite[J]. Industrial & Engineering Chemistry Research, 2020, 59(4):1702-1711. doi: 10.1021/acs.iecr.9b04042
|
37 |
DHANASEKAR M, RATHA S, ROUT C S,et al. Self-assembled nanosheets of ZnCo 2O 4 as efficient sonophotocatalysts for day light dye degradation[J]. Ceramics International, 2022, 48(19):29460-29464. doi: 10.1016/j.ceramint.2022.06.223
|
38 |
LIU Hai, SU Peng, JIN Zhiliang,et al. A sea-urchin-structured NiCo 2O 4 decorated Mn 0.05Cd 0.95S p-n heterojunction for enhanced photocatalytic hydrogen evolution[J]. Dalton Transactions, 2020, 49(38):13393-13405. doi: 10.1039/d0dt02753g
|
39 |
CHEN Mengying, YANG Xiuying, WANG Yousheng,et al. CuCo 2O 4 photocatalyst for bifunctional applications:Toxic dye degradation and antimicrobial activity[J]. Materials Science in Semiconductor Processing, 2022, 146:106652. doi: 10.1016/j.mssp.2022.106652
|
40 |
ZHOU Rui, ZHAO Jian, SHEN Ningfei,et al. Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo 2O 4 nanoparticles[J]. Chemosphere, 2018, 197:670-679. doi: 10.1016/j.chemosphere.2018.01.079
|
41 |
GUO Sheng, ZHANG Lijuan, CHEN Meng,et al. Heterogeneous activation of peroxymonosulfate by a spinel CoAl 2O 4 catalyst for the degradation of organic pollutants[J]. Catalysts, 2022, 12(8):847. doi: 10.3390/catal12080847
|
42 |
INBARAJ D J, CHANDRAN B, MANGALARAJ C. Synthesis of CoFe 2O 4 and CoFe 2O 4/g-C 3N 4 nanocomposite via honey mediated sol-gel auto combustion method and hydrothermal method with enhanced photocatalytic and efficient Pb 2+ adsorption property[J]. Materials Research Express, 2019, 6(5):055501. doi: 10.1088/2053-1591/aafd5d
|
43 |
HU Peidong, LONG Mingce. Cobalt-catalyzed sulfate radical-based advanced oxidation:A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181:103-117. doi: 10.1016/j.apcatb.2015.07.024
|
44 |
ZHANG Qihui, HE Dan, LI Xinran,et al. Mechanism and performance of singlet oxygen dominated peroxymonosulfate activation on CoOOH nanoparticles for 2,4-dichlorophenol degradation in water[J]. Journal of Hazardous Materials, 2020, 384:121350. doi: 10.1016/j.jhazmat.2019.121350
|