1 |
BARAKAT M A. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 2011, 4(4):361-377. doi: 10.1016/j.arabjc.2010.07.019
|
2 |
SINGH P, SHANDILYA P, RAIZADA P,et al. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification[J]. Arabian Journal of Chemistry, 2020, 13(1):3498-3520. doi: 10.1016/j.arabjc.2018.12.001
|
3 |
VELEMPINI T, PRABAKARAN E, PILLAY K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water:A review[J]. Materials Today Chemistry, 2021, 19:100380. doi: 10.1016/j.mtchem.2020.100380
|
4 |
DONG Haoran, ZENG Guangming, TANG Lin,et al. An overview on limitations of TiO 2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research, 2015, 79:128-146. doi: 10.1016/j.watres.2015.04.038
|
5 |
AGUINACO A, AMAYA B, RAMÍREZ-DEL-SOLAR M. Facile fabrication of Fe-TiO 2 thin film and its photocatalytic activity[J]. Environmental Science and Pollution Research, 2022, 29(16):23292-23302. doi: 10.1007/s11356-021-17425-2
|
6 |
MISHRA S, CHAKINALA N, CHAKINALA A G,et al. Photocatalytic degradation of methylene blue using monometallic and bimetallic Bi-Fe doped TiO 2 [J]. Catalysis Communications, 2022, 171:106518. doi: 10.1016/j.catcom.2022.106518
|
7 |
YANG Guidong, JIANG Zheng, SHI Huahong,et al. Study on the photocatalysis of F-S co-doped TiO 2 prepared using solvothermal method[J]. Applied Catalysis B:Environmental, 2010, 96(3/4):458-465. doi: 10.1016/j.apcatb.2010.03.004
|
8 |
ASAHI R, MORIKAWA T, IRIE H,et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst:Designs,developments,and prospects[J]. Chemical Reviews, 2014, 114(19):9824-9852. doi: 10.1021/cr5000738
|
9 |
NGUYEN T H, HOANG N H, VAN TRAN C,et al. Green synthesis of a photocatalyst Ag/TiO 2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes[J]. Chemosphere, 2022, 306:135474. doi: 10.1016/j.chemosphere.2022.135474
|
10 |
VIKRANT K, WEON S, KIM K H,et al. Platinized titanium dioxide(Pt/TiO 2) as a multi-functional catalyst for thermocatalysis,photocatalysis,and photothermal catalysis for removing air pollutants[J]. Applied Materials Today, 2021, 23:100993. doi: 10.1016/j.apmt.2021.100993
|
11 |
PATHAK T K, KROON R E, CRACIUN V,et al. Influence of Ag,Au and Pd noble metals doping on structural,optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials[J]. Heliyon, 2019, 5(3):e01333. doi: 10.1016/j.heliyon.2019.e01333
|
12 |
SHI Jianwen, YAN Xiaoxia, CUI Haojie,et al. Low-temperature synthesis of CdS/TiO 2 composite photocatalysts:Influence of synthetic procedure on photocatalytic activity under visible light[J]. Journal of Molecular Catalysis A:Chemical, 2012, 356:53-60. doi: 10.1016/j.molcata.2012.01.001
|
13 |
宋艳,陈树森,康绍辉,等. 光催化材料CdS/TiO2的制备及其光催化还原U(Ⅵ)性能研究[J]. 原子能科学技术,2022,56(7):1251-1257.
|
|
SONG Yan, CHEN Shusen, KANG Shaohui,et al. Preparation of CdS/TiO2 photocatalytic material and its photocatalytic reduction of U(Ⅵ)[J]. Atomic Energy Science and Technology,2022,56(7):1251-1257.
|
14 |
FAWZI SULEIMAN KHASAWNEH O, PALANIANDY P. Removal of organic pollutants from water by Fe 2O 3/TiO 2 based photocatalytic degradation:A review[J]. Environmental Technology & Innovation, 2021, 21:101230. doi: 10.1016/j.eti.2020.101230
|
15 |
NORUOZI A, NEZAMZADEH-EJHIEH A. Preparation,characterization,and investigation of the catalytic property of α-Fe 2O 3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue[J]. Chemical Physics Letters, 2020, 752:137587. doi: 10.1016/j.cplett.2020.137587
|
16 |
BARAN T, WOJTYŁA S, MINGUZZI A,et al. Achieving efficient H 2O 2 production by a visible-light absorbing,highly stable photosensitized TiO 2 [J]. Applied Catalysis B:Environmental, 2019, 244:303-312. doi: 10.1016/j.apcatb.2018.11.044
|
17 |
MAHADIK S A, PATIL A, PATHAN H M,et al. Thionaphthoquinones as photosensitizers for TiO 2 nanorods and ZnO nanograin based dye-sensitized solar cells:Effect of nanostructures on charge transport and photovoltaic performance[J]. Engineered Science, 2020, 14:46-58. doi: 10.30919/es8d1160
|
18 |
MAHADIK S A, PATHAN H M, SALUNKE-GAWALI S,et al. Aminonaphthoquinones as photosensitizers for mesoporous ZnO based dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2020, 845:156279. doi: 10.1016/j.jallcom.2020.156279
|
19 |
杜淼,张光荣. 石墨烯的制备及其应用研究进展[J]. 无机盐工业,2019,51(3):12-15.
|
|
DU Miao, ZHANG Guangrong. Progress in preparation and application of graphene[J]. Inorganic Chemicals Industry,2019,51(3):12-15.
|
20 |
KAUSOR M AL, CHAKRABORTTY D. Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water:A review on fabrication,performance enhancement and challenges[J]. Inorganic Chemistry Communications, 2021, 129:108630. doi: 10.1016/j.inoche.2021.108630
|
21 |
LEE D Y, KIM J T, PARK J H,et al. Effect of Er doping on optical band gap energy of TiO 2 thin films prepared by spin coating[J]. Current Applied Physics, 2013, 13(7):1301-1305. doi: 10.1016/j.cap.2013.03.025
|
22 |
PELAEZ M, NOLAN N T, PILLAI S C,et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B:Environmental, 2012, 125:331-349. doi: 10.1016/j.apcatb.2012.05.036
|
23 |
YU Changhao, ZHANG Zhibin, DONG Zhimin,et al. Fabrication of heterostructured CdS/TiO 2 nanotube arrays composites for photoreduction of U(Ⅵ) under visible light[J]. Journal of Solid State Chemistry, 2021, 298:122053. doi: 10.1016/j.jssc.2021.122053
|
24 |
MAZIERSKI P, MIKOLAJCZYK A, BAJOROWICZ B,et al. The role of lanthanides in TiO 2-based photocatalysis:A review[J]. Applied Catalysis B:Environmental, 2018, 233:301-317. doi: 10.1016/j.apcatb.2018.04.019
|
25 |
AMEEN S, SHAHEER AKHTAR M, SEO H K,et al. Advanced ZnO-graphene oxide nanohybrid and its photocatalytic applications[J]. Materials Letters, 2013, 100:261-265. doi: 10.1016/j.matlet.2013.03.012
|
26 |
AZARANG M, SHUHAIMI A, YOUSEFI R,et al. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation[J]. Journal of Applied Physics, 2014, 116(8):084307. doi: 10.1063/1.4894141
|
27 |
FU Dongying, HAN Gaoyi, YANG Feifei,et al. Seed-mediated synthesis and the photo-degradation activity of ZnO-graphene hybrids excluding the influence of dye adsorption[J]. Applied Surface Science, 2013, 283:654-659. doi: 10.1016/j.apsusc.2013.07.003
|
28 |
KANAN S, MOYET M A, ARTHUR R B,et al. Recent advances on TiO 2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies[J]. Catalysis Reviews, 2020, 62(1):1-65. doi: 10.1080/01614940.2019.1613323
|
29 |
HAROUNE L, SALAUN M, MÉNARD A,et al. Photocatalytic degradation of carbamazepine and three derivatives using TiO 2 and ZnO:Effect of pH,ionic strength,and natural organic matter[J]. Science of the Total Environment, 2014, 475:16-22. doi: 10.1016/j.scitotenv.2013.12.104
|
30 |
CHANDIRAN A K, ABDI-JALEBI M, NAZEERUDDIN M K,et al. Analysis of electron transfer properties of ZnO and TiO 2 photoanodes for dye-sensitized solar cells[J]. ACS Nano, 2014, 8(3):2261-2268. doi: 10.1021/nn405535j
|
31 |
WAHYUNI E T, DIANTARIANI N P, KARTINI I,et al. Enhancement of the photostability and visible photoactivity of ZnO photocatalyst used for reduction of Cr(Ⅵ) ions[J]. Results in Engineering, 2022, 13:100351. doi: 10.1016/j.rineng.2022.100351
|
32 |
LIU Yu, HU Yong, ZHOU Mojiao,et al. Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J]. Applied Catalysis B:Environmental, 2012, 125:425-431. doi: 10.1016/j.apcatb.2012.06.016
|
33 |
DWORSCHAK D, BRUNNHOFER C, VALTINER M. Photocorrosion of ZnO single crystals during electrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(46):51530-51536. doi: 10.1021/acsami.0c15508
|
34 |
ANSARI S, ANSARI M S, SATSANGEE S P,et al. WO 3 decorated graphene nanocomposite based electrochemical sensor:A prospect for the detection of anti-anginal drug[J]. Analytica Chimica Acta, 2019, 1046:99-109. doi: 10.1016/j.aca.2018.09.028
|
35 |
KNÖPPEL J, ZHANG Siyuan, SPECK F D,et al. Time-resolved analysis of dissolution phenomena in photoelectrochemistry:A case study of WO 3 photocorrosion[J]. Electrochemistry Communications, 2018, 96:53-56. doi: 10.1016/j.elecom.2018.09.008
|
36 |
AN Xiaoqiang, YU J C, WANG Yu,et al. WO 3nanorods/graphene nanocomposites for high-efficiency visible-light-riven photocatalysis and NO 2 gas sensing[J]. Journal of Materials Chemistry, 2012, 22(17):8525-8531. doi: 10.1039/c2jm16709c
|
37 |
XI Guangcheng, YUE Bing, CAO Junyu,et al. Fe 3O 4/WO 3 hierarchical core-shell structure:High-performance and recyclable visibl-light photocatalysis[J]. Chemistry-A European Journal, 2011, 17(18):5145-5154. doi: 10.1002/chem.201002229
|
38 |
SEIFOLLAHI BAZARJANI M, HOJAMBERDIEV M, MORITA K,et al. Visible light photocatalysis with c-WO(3- x)/WO 3 × H 2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer[J]. Journal of the American Chemical Society, 2013, 135(11):4467-4475. doi: 10.1021/ja3126678
|
39 |
|
|
ZHU Hongrui, ZHANG Jing, LI Chun. Research progress on modification of tungsten trioxide for visible light photoelectrocatalysis[J]. Chemical Production and Technology, 2021, 27(4):32-37. doi: 10.3969/j.issn.1006-6829.2021.04.008
|
40 |
WANG Pingquan, BAI Yang, LUO Pingya,et al. Graphene-WO 3 nanobelt composite:Elevated conduction band toward photocatalytic reduction of CO 2 into hydrocarbon fuels[J]. Catalysis Communications, 2013, 38:82-85. doi: 10.1016/j.catcom.2013.04.020
|
41 |
任芳,朱光明,任鹏刚. 纳米石墨烯复合材料的制备及应用研究进展[J]. 复合材料学报,2014,31(2):263-272.
|
|
REN Fang, ZHU Guangming, REN Penggang. The latest advances in preparation and application of nano graphene composites[J]. Acta Materiae Compositae Sinica,2014,31(2):263-272.
|
42 |
JOSHI D J, KODURU J R, MALEK N I,et al. Surface modifications and analytical applications of graphene oxide:A review[J]. TrAC Trends in Analytical Chemistry, 2021, 144:116448. doi: 10.1016/j.trac.2021.116448
|
43 |
|
44 |
LEE X J, HIEW B Y Z, LAI K C,et al. Review on graphene and its derivatives:Synthesis methods and potential industrial implementation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98:163-180. doi: 10.1016/j.jtice.2018.10.028
|
45 |
JIA Fengchun, XIAO Xiao, NASHALIAN A,et al. Advances in graphene oxide membranes for water treatment[J]. Nano Research, 2022, 15(7):6636-6654. doi: 10.1007/s12274-022-4273-y
|
46 |
韩永萍,刘红梅,郭硕,等. TiO2/GO复合材料研究及其在环境污染治理中的应用[J]. 化工新型材料,2021,49(7):33-38.
|
|
HAN Yongping, LIU Hongmei, GUO Shuo,et al. Study on TiO2/GO composite and its application in environmental pollution treatment[J]. New Chemical Materials,2021,49(7):33-38.
|
47 |
TARCAN R, TODOR-BOER O, PETROVAI I,et al. Reduced graphene oxide today[J]. Journal of Materials Chemistry C, 2020, 8(4):1198-1224. doi: 10.1039/c9tc04916a
|
48 |
HUANG Xiao, YIN Zongyou, WU Shixin,et al. Graphene-based materials:Synthesis,characterization,properties,and applications[J]. Small(Weinheim an Der Bergstrasse,Germany), 2011, 7(14):1876-1902. doi: 10.1002/smll.201002009
|
49 |
任建. 二氧化钛/石墨烯复合材料的制备及性能研究[D]. 成都:西华大学,2020.
|
|
REN Jian. Preparation and properties of titanium dioxide/graphene composites[D]. Chengdu:Xihua University,2020.
|
50 |
RAMOS D K C, GONZÁLEZ M V, ESPARZA MUÑÓZ R A,et al. Obtaining and characterization of TiO 2-GO composites for photocatalytic applications[J]. International Journal of Photoenergy, 2020, 2020:1-9. doi: 10.1155/2020/3489218
|
51 |
FU Dongying, HAN Gaoyi, CHANG Yunzhen,et al. The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water[J]. Materials Chemistry and Physics, 2012, 132(2/3):673-681. doi: 10.1016/j.matchemphys.2011.11.085
|
52 |
ILIEV V, TOMOVA D, BILYARSKA L. Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO 3/TiO 2/reduced graphene oxide photocatalysts under UV light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 351:69-77. doi: 10.1016/j.jphotochem.2017.10.022
|
53 |
KIM T W, PARK M, KIM H Y,et al. Preparation of flower-like TiO 2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants[J]. Journal of Solid State Chemistry, 2016, 239:91-98. doi: 10.1016/j.jssc.2016.04.010
|
54 |
KHAN M E, KHAN M M, CHO M H. Fabrication of WO 3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance[J]. RSC Advances, 2016, 6(25):20824-20833. doi: 10.1039/c5ra24575c
|
55 |
FU Dongying, HAN Gaoyi, YANG Feifei,et al. Seed-mediated synthesis and the photo-degradation activity of ZnO-graphene hybrids excluding the influence of dye adsorption[J]. Applied Surface Science, 2013, 283:654-659. doi: 10.1016/j.apsusc.2013.07.003
|
56 |
SUN Lingling, WANG Guohong, HAO Ruirui,et al. Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu 2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B[J]. Applied Surface Science, 2015, 358:91-99. doi: 10.1016/j.apsusc.2015.08.128
|
57 |
NUENGMATCHA P, CHANTHAI S, MAHACHAI R,et al. Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes(texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO 2 composite[J]. Journal of Environmental Chemical Engineering, 2016, 4(2):2170-2177. doi: 10.1016/j.jece.2016.03.045
|
58 |
BIBI S, AHMAD A, RAZA ANJUM M ALI,et al. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide(rGO) based metal oxides (rGO-Fe 3O 4/TiO 2) nanocomposite under UV-visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105580. doi: 10.1016/j.jece.2021.105580
|
59 |
DAS T R, SHARMA P K. Sensitive and selective electrochemical detection of Cd 2+ by using bimetal oxide decorated Graphene oxide(Bi 2O 3/Fe 2O 3@GO) electrode[J]. Microchemical Journal, 2019, 147:1203-1214. doi: 10.1016/j.microc.2019.04.001
|
60 |
DAS T R, SHARMA P K. Bimetal oxide decorated graphene oxide(Gd 2O 3/Bi 2O 3@GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye[J]. Materials Science in Semiconductor Processing, 2020, 105:104721. doi: 10.1016/j.mssp.2019.104721
|
61 |
李莹. 二氧化钛/石墨烯复合材料的制备及导电性研究[D]. 锦州:渤海大学,2019.
|
|
LI Ying. Preparation and conductivity of titanium dioxide/graphene composites[D]. Jinzhou:Bohai University,2019.
|
62 |
刘幸一. 二氧化钛复合材料的制备及光催化性能研究[D]. 哈尔滨:哈尔滨工业大学,2016.
|
|
LIU Xingyi. Preparation and photocatalytic properties of titanium dioxide composites[D]. Harbin:Harbin Institute of Technology,2016.
|
63 |
MIN Qianhao, ZHANG Xiaoxia, ZHANG Hongyi,et al. Synthesis of Fe 3O 4-graphene-TiO 2 ternary composite networks for enhanced capture of phosphopeptides[J]. Chemical Communications(Cambridge,England), 2011, 47(42):11709-11711. doi: 10.1039/c1cc15151g
|
64 |
TSAI S C, SONG Y L, TSAI C S,et al. Ultrasonic spray pyrolysis for nanoparticles synthesis[J]. Journal of Materials Science, 2004, 39(11):3647-3657. doi: 10.1023/b:jmsc.0000030718.76690.11
|
65 |
MAJERIČ P, RUDOLF R. Advances in ultrasonic spray pyrolysis processing of noble metal nanoparticles:review[J]. Materials(Basel,Switzerland), 2020, 13(16):3485. doi: 10.3390/ma13163485
|
66 |
RAHEMI ARDEKANI S, SABOUR ROUH AGHDAM A, NAZARI M,et al. A comprehensive review on ultrasonic spray pyrolysis technique:Mechanism,main parameters and applications in condensed matter[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141:104631. doi: 10.1016/j.jaap.2019.104631
|
67 |
PARK J A, YANG B, LEE J,et al. Ultrasonic spray pyrolysis synthesis of reduced graphene oxide/anatase TiO 2 composite and its application in the photocatalytic degradation of methylene blue in water[J]. Chemosphere, 2018, 191:738-746. doi: 10.1016/j.chemosphere.2017.10.094
|
68 |
LU Ting, ZHANG Yanping, LI Haibo,et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO 2 composite films for supercapacitors[J]. Electrochimica Acta, 2010, 55(13):4170-4173. doi: 10.1016/j.electacta.2010.02.095
|
69 |
YANG Jikai, ZHANG Xintong, LI Bing,et al. Photocatalytic activities of heterostructured TiO 2-graphene porous microspheres prepared by ultrasonic spray pyrolysis[J]. Journal of Alloys and Compounds, 2014, 584:180-184. doi: 10.1016/j.jallcom.2013.08.203
|
70 |
LIANG Yongye, WANG Hailiang, CASALONGUE H S,et al. TiO 2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials[J]. Nano Research, 2010, 3(10):701-705. doi: 10.1007/s12274-010-0033-5
|
71 |
JIANG Baojiang, TIAN Chungui, ZHOU Wei,et al. In situ growth of TiO 2 in interlayers of expanded graphite for the fabrication of TiO 2-graphene with enhanced photocatalytic activity[J]. Chemistry(Weinheim an Der Bergstrasse,Germany), 2011, 17(30):8379-8387. doi: 10.1002/chem.201100250
|
72 |
LIU Yu, HU Yong, ZHOU Mojiao,et al. Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J]. Applied Catalysis B:Environmental, 2012, 125:425-431. doi: 10.1016/j.apcatb.2012.06.016
|
73 |
SETIAWAN S, HARDIANSYAH A, KARTIKOWATI C W,et al. Microwave-assisted synthesis of TiO 2/GO composite and its adsorption-photocatalysis property under visible light[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1143(1):012055. doi: 10.1088/1757-899x/1143/1/012055
|
74 |
HARIHARAN G, DHARANI P, ARUNA K,et al. Decoration of WO 3 nanospheres with graphene nanotubes for enhancement of solar energy conversion applications[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(18):14992-15004. doi: 10.1007/s10854-022-08417-0
|
75 |
KASHINATH L, NAMRATHA K, BYRAPPA K. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes[J]. Applied Surface Science, 2015, 357:1849-1856. doi: 10.1016/j.apsusc.2015.09.072
|
76 |
LIU Xinjuan, PAN Likun, LV Tian,et al. Investigation of photocatalytic activities over ZnO-TiO 2-reduced graphene oxide composites synthesized via microwave-assisted reaction[J]. Journal of Colloid and Interface Science, 2013, 394:441-444. doi: 10.1016/j.jcis.2012.11.047
|
77 |
YANG W D, LI Yanru, LEE Yichao. Synthesis of r-GO/TiO 2 composites via the UV-assisted photocatalytic reduction of graphene oxide[J]. Applied Surface Science, 2016, 380:249-256. doi: 10.1016/j.apsusc.2016.01.118
|
78 |
LIU Xinjuan, PAN Likun, ZHAO Qingfei,et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2012, 183:238-243. doi: 10.1016/j.cej.2011.12.068
|
79 |
JABEEN M, ISHAQ M, SONG Weiming,et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide nanocomposites with enhanced photocatalytic performance in degradation of methylene blue[J]. ECS Journal of Solid State Science and Technology, 2017, 6(4):M36-M43. doi: 10.1149/2.0231704jss
|
80 |
ABDOLHOSSEINZADEH S, ASGHARZADEH H, SADIGHIKIA S,et al. UV-assisted synthesis of reduced graphene oxide-ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance[J]. Research on Chemical Intermediates, 2016, 42(5):4479-4496. doi: 10.1007/s11164-015-2291-z
|
81 |
PU Y C, CHOU H Y, Wenshuo KUO,et al. Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide(Cu 2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis[J]. Applied Catalysis B:Environmental, 2017, 204:21-32. doi: 10.1016/j.apcatb.2016.11.012
|
82 |
GUO Siyao, DAI Jianguo, ZHAO Tiejun,et al. A novel microporous amorphous-ZnO@TiO 2/graphene ternary nanocomposite with enhanced photocatalytic activity[J]. RSC Advances, 2017, 7(58):36787-36792. doi: 10.1039/c7ra06232j
|
83 |
QI Kezhen, ZHUANG Chunqiang, ZHANG Manjie,et al. Sonochemical synthesis of photocatalysts and their applications[J]. Journal of Materials Science & Technology, 2022, 123:243-256. doi: 10.1016/j.jmst.2022.02.019
|
84 |
CAO Huimin, ZHANG Weilan, WANG Cuiping,et al. Sonochemical degradation of poly- and perfluoroalkyl substances:A review[J]. Ultrasonics Sonochemistry, 2020, 69:105245. doi: 10.1016/j.ultsonch.2020.105245
|
85 |
KAMALI M, DEWIL R, APPELS L,et al. Nanostructured materials via green sonochemical routes-Sustainability aspects[J]. Chemosphere, 2021, 276:130146. doi: 10.1016/j.chemosphere.2021.130146
|
86 |
DHEYAB M A, AZIZ A A, JAMEEL M S,et al. Mechanisms of effective gold shell on Fe 3O 4 core nanoparticles formation using sonochemistry method[J]. Ultrasonics Sonochemistry, 2020, 64:104865. doi: 10.1016/j.ultsonch.2019.104865
|
87 |
GUO Jingjing, LI Yao, ZHU Shenmin,et al. Synthesis of WO 3@Graphene composite for enhanced photocatalytic oxygen evolution from water[J]. RSC Advances, 2012, 2(4):1356-1363. doi: 10.1039/c1ra00621e
|
88 |
PURKAYASTHA M D,SIL S, SINGH N,et al. Sonochemical synthesis of nanospherical TiO 2 within graphene oxide nanosheets and its application as a photocatalyst and a Schottky diode[J]. FlatChem, 2020, 22:100180. doi: 10.1016/j.flatc.2020.100180
|
89 |
MUTHUKRISHNARAJ A, KALAIVANI S S, MANIKANDAN A,et al. Sonochemical synthesis and visible light induced photocatalytic property of reduced graphene oxide@ZnO hexagonal hollow rod nanocomposite[J]. Journal of Alloys and Compounds, 2020, 836:155377. doi: 10.1016/j.jallcom.2020.155377
|
90 |
ABULIZI A, YANG Guohai, ZHU Junjie. One-step simple sonochemical fabrication and photocatalytic properties of Cu 2O-rGO composites[J]. Ultrasonics Sonochemistry, 2014, 21(1):129-135. doi: 10.1016/j.ultsonch.2013.07.013
|
91 |
余琼卫,冯钰锜. 液相沉积法(LPD)在分析化学中的应用[J]. 化学进展,2011,23(6):1211-1223.
|
|
YU Qiongwei, FENG Yuqi. Application of liquid-phase deposition in analytical chemistry[J]. Progress in Chemistry,2011,23(6):1211-1223.
|
92 |
ZHANG Rui, ZHANG Yi he, AN Qi,et al. TiO 2/graphite oxide composite as an efficient photocatalyst for organic dye reduction[J]. Advanced Materials Research, 2013, 699:557-559. doi: 10.4028/www.scientific.net/amr.699.557
|
94 |
CHE G, LAKSHMI B B, MARTIN C R,et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method[J]. Chemistry of Materials, 1998, 10(1):260-267. doi: 10.1021/cm970412f
|
95 |
AZIMIRAD R, SAFA S. Preparation of three dimensional graphene foam-WO 3 nanocomposite with enhanced visible light photocatalytic activity[J]. Materials Chemistry and Physics, 2015, 162:686-691. doi: 10.1016/j.matchemphys.2015.06.043
|
96 |
CAI Ran, WU Jiagen, SUN Li,et al. 3D graphene/ZnO composite with enhanced photocatalytic activity[J]. Materials & Design, 2016, 90:839-844. doi: 10.1016/j.matdes.2015.11.020
|