1 |
ZHOU Peilei, ZHU Quanji, SUN Xiaoxia,et al. Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination[J]. Chemical Engineering Journal, 2023, 464:142508. doi: 10.1016/j.cej.2023.142508
|
2 |
FARSI A, DINCER I. Development and evaluation of an integrated MED/membrane desalination system[J]. Desalination, 2019, 463:55-68. doi: 10.1016/j.desal.2019.02.015
|
3 |
AL-HAMAHMY M, FATH H E S, KHANAFER K. Techno-economical simulation and study of a novel MSF desalination process[J]. Desalination, 2016, 386:1-12. doi: 10.1016/j.desal.2016.02.018
|
4 |
ELSAYED M M. Rational bases for designing vapour compression water desalination systems[J]. Desalination, 1986, 58(3):213-225. doi: 10.1016/0011-9164(86)87005-9
|
5 |
SRIMUK P, KAASIK F, KRÜNER B,et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(47):18265-18271. doi: 10.1039/c6ta07833h
|
6 |
SHEN Xiaojie, LI Liqing, XIONG Yuecheng,et al. Graphene-assisted Ti 3C 2 MXene-derived ultrathin sodium titanate for capacitive deionization with excellent rate performance and long cycling stability[J]. Journal of Materials Chemistry A, 2022, 10(18):10192-10200. doi: 10.1039/d2ta00449f
|
7 |
FAN Xiangqian, YANG Yang, SHI Xinlei,et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance[J]. Advanced Functional Materials, 2020, 30(52):2007110. doi: 10.1002/adfm.202007110
|
8 |
BERKANI M, SMAALI A, ALMOMANI F,et al. Recent advances in MXene-based nanomaterials for desalination at water interfaces[J]. Environmental Research, 2022, 203:111845. doi: 10.1016/j.envres.2021.111845
|
9 |
CHOI H J. Electronic structures and dirac-semimetal properties of black phosphorus[J]. Physics and High Technology, 2017, 26(5):2-6. doi: 10.3938/phit.26.017
|
10 |
PARK T H, YU S,KOO M,et al. Shape-adaptable 2D titanium carbide(MXene) heater[J]. ACS Nano, 2019, 13(6):6835-6844. doi: 10.1021/acsnano.9b01602
|
11 |
ZHAO Jianqiu, YANG Yawei, YANG Chenhui,et al. A hydrophobic surface enabled salt-blocking 2D Ti 3C 2 MXene membrane for efficient and stable solar desalination[J]. Journal of Materials Chemistry A, 2018, 6(33):16196-16204. doi: 10.1039/c8ta05569f
|
12 |
CAI Yanmeng, WANG Yue, ZHANG Le,et al. 3D heterostructure constructed by few-layered MXenes with a MoS 2 layer as the shielding shell for excellent hybrid capacitive deionization and enhanced structural stability[J]. ACS Applied Materials & Interfaces, 2022, 14(2):2833-2847. doi: 10.1021/acsami.1c20531
|
13 |
ZHU Jing, Enna HA, ZHAO Guoliang,et al. Recent advance in MXenes:A promising 2D material for catalysis,sensor and chemical adsorption[J]. Coordination Chemistry Reviews, 2017, 352:306-327. doi: 10.1016/j.ccr.2017.09.012
|
14 |
LI Zhe, WU Yue. 2D early transition metal carbides (MXenes) for catalysis[J]. Small, 2019, 15(29):1804736. doi: 10.1002/smll.201804736
|
15 |
GHIDIU M, LUKATSKAYA M R, ZHAO Mengqiang,et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516:78-81. doi: 10.1038/nature13970
|
16 |
NATU V,PAI R, SOKOL M,et al. 2D Ti 3C 2T z MXene synthesized by water-free etching of Ti 3AlC 2 in polar organic solvents[J]. Chem, 2020, 6(3):616-630. doi: 10.1016/j.chempr.2020.01.019
|
17 |
LI Mian, LU Jun, LUO Kan,et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11):4730-4737. doi: 10.1021/jacs.9b00574
|
18 |
PANG S Y, WONG Y T, YUAN Shuoguo,et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials[J]. Journal of the American Chemical Society, 2019, 141(24):9610-9616. doi: 10.1021/jacs.9b02578
|
19 |
SHEN Miao, JIANG Weiyan, LIANG Kun,et al. One-pot green process to synthesize MXene with controllable surface terminations using molten salts[J]. Angewandte Chemie International Edition, 2021, 60(52):27013-27018. doi: 10.1002/anie.202110640
|
20 |
DIXIT F, ZIMMERMANN K, DUTTA R,et al. Application of MXenes for water treatment and energy-efficient desalination:A review[J]. Journal of Hazardous Materials, 2022, 423(Pt B):127050. doi: 10.1016/j.jhazmat.2021.127050
|
21 |
GONG Siqi, LIU Huibin, ZHAO Fan,et al. Vertically aligned bismuthene nanosheets on MXene for high-performance capacitive deionization[J]. ACS Nano, 2023, 17(5):4843-4853. doi: 10.1021/acsnano.2c11430
|
22 |
LIU Guozhen, SHEN Jie, LIU Quan,et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science, 2018, 548:548-558. doi: 10.1016/j.memsci.2017.11.065
|
23 |
LU Ting, LIU Yong, XU Xingtao,et al. Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes[J]. Separation and Purification Technology, 2021, 256:117771. doi: 10.1016/j.seppur.2020.117771
|
24 |
LI Yang, QI Junwen, LI Jiansheng,et al. Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8):6635-6644. doi: 10.1021/acssuschemeng.7b00884
|
25 |
XU Xingtao, PAN Likun, LIU Yong,et al. Enhanced capacitive deionization performance of graphene by nitrogen doping[J]. Journal of Colloid and Interface Science, 2015, 445:143-150. doi: 10.1016/j.jcis.2015.01.003
|
26 |
XU Liming, DING Zibiao, CHEN Yaoyu,et al. Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization[J]. Journal of Colloid and Interface Science, 2023, 630:372-381. doi: 10.1016/j.jcis.2022.10.140
|
27 |
WANG Ziming, XU Xingtao, KIM J,et al. Nanoarchitectured metal-organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization[J]. Materials Horizons, 2019, 6(7):1433-1437. doi: 10.1039/c9mh00306a
|
28 |
ANWER S, ANJUM D H, LUO Shaohong,et al. 2D Ti 3C 2T x MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination[J]. Chemical Engineering Journal, 2021, 406:126827. doi: 10.1016/j.cej.2020.126827
|
29 |
CHEN Zeqiu, XU Xingtao, WANG Kai,et al. Hybrid of pyrazine based π-conjugated organic molecule and MXene for hybrid capacitive deionization[J]. Separation and Purification Technology, 2023, 315:123628. doi: 10.1016/j.seppur.2023.123628
|
30 |
CHEN Zeqiu, DING Zibiao, CHEN Yaoyu,et al. Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate-on-MXene nano-stacking for high-performance capacitive deionization[J]. Chemical Engineering Journal, 2023, 452:139451. doi: 10.1016/j.cej.2022.139451
|
31 |
DING Zibiao, XU Xingtao, LI Jiabao,et al. Nanoarchitectonics from 2D to 3D:MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization[J]. Chemical Engineering Journal, 2022, 430:133161. doi: 10.1016/j.cej.2021.133161
|
32 |
ZHAO Fan, ZHANG Yaning, GONG Siqi,et al. Interfacial assembled porous bismuthene/Ti 3C 2T x MXene heterostructure for highly efficient capacitive deionization[J]. Journal of Colloid and Interface Science, 2023, 652(Pt B):2139-2146. doi: 10.1016/j.jcis.2023.09.035
|
33 |
IBRAHIM I, BHOOPAL V, SEO D H,et al. Biomass-based photothermal materials for interfacial solar steam generation:A review[J]. Materials Today Energy, 2021, 21:100716. doi: 10.1016/j.mtener.2021.100716
|
34 |
WU Yitian, KONG Rui, MA Chaoliang,et al. Simulation-guided design of bamboo leaf-derived carbon-based high-efficiency evaporator for solar-driven interface water evaporation[J]. Energy & Environmental Materials, 2022, 5(4):1323-1331. doi: 10.1002/eem2.12251
|
35 |
ZHANG Baoping, GU Qinfen, WANG Cheng,et al. Self-assembled hydrophobic/hydrophilic porphyrin-Ti 3C 2T x MXene Janus membrane for dual-functional enabled photothermal desalination[J]. ACS Applied Materials & Interfaces, 2021, 13(3):3762-3770. doi: 10.1021/acsami.0c16054
|
36 |
ZHANG Baoping, WONG P W, GUO Jiaxin,et al. Transforming Ti 3C 2T x MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination[J]. Nature Communications, 2022, 13:3315. doi: 10.1038/s41467-022-31028-6
|
37 |
WANG Peilin, ZHANG Wei, YUAN Qi,et al. 3D Janus structure MXene/cellulose nanofibers/luffa aerogels with superb mechanical strength and high-efficiency desalination for solar-driven interfacial evaporation[J]. Journal of Colloid and Interface Science, 2023, 645:306-318. doi: 10.1016/j.jcis.2023.04.081
|
38 |
DING Mingmei, XU Hang, CHEN Wei,et al. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination[J]. Journal of Membrane Science, 2020, 600:117871. doi: 10.1016/j.memsci.2020.117871
|