| 1 | 杨泽斌, 张旭斌, 吕国军, 等.  双助剂修饰WO3/g-C3N4及其光催化性能研究[J]. 现代化工, 2018, 38 (12): 149- 153. URL
 | 
																													
																						| 2 | Li Wenzhang ,  Zhan Faqi ,  Jie Li , et al.  Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes[J]. Electrochimica Acta, 2015, 160, 57- 63. doi: 10.1016/j.electacta.2015.01.095
 | 
																													
																						| 3 | Shukla S ,  Chaudhary S ,  Umar A , et al.  Surfactant functionalized tungsten oxide nanoparticles with enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2016, 288, 423- 431. doi: 10.1016/j.cej.2015.12.039
 | 
																													
																						| 4 | Tahir M B ,  Nabi G ,  Rafique M , et al.  Nanostructured-based WO3 photocatalysts:Recent development, activity enhancement, perspectives and applications for wastewater treatment[J]. International Journal of Environmental Science and Technology, 2017, 14 (11): 2519- 2542. doi: 10.1007/s13762-017-1394-z
 | 
																													
																						| 5 | Ding J R ,  Kim K S .  1-D WO3@BiVO4 heterojunctions with highly enhanced photoelectrochemical performance[J]. Chemical Engineering Journal, 2018, 334, 1650- 1656. doi: 10.1016/j.cej.2017.11.130
 | 
																													
																						| 6 | Wang Xingang ,  Zhang Huailong ,  Liu Lili , et al.  Controlled morphologies and growth direction of WO3 nanostructures hydrothermally synthesized with citric acid[J]. Materials Letters, 2014, 130, 248- 251. doi: 10.1016/j.matlet.2014.05.138
 | 
																													
																						| 7 | Zhang Ning ,  Chen Chen ,  Mei Zongwei , et al.  Monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations[J]. ACS Appl. Mater. Interfaces, 2016, 8 (16): 10367- 10374. doi: 10.1021/acsami.6b02275
 | 
																													
																						| 8 | Liang Zhiyu ,  Wei Jinxin ,  Wang Xiu .  Elegant Z-scheme-dictated g-C3N4 enwrapped WO3 superstructures:A multifarious platform for versatile photoredox catalysis[J]. Journal of Materials Chemistry A, 2017, 5 (30): 15601- 15612. doi: 10.1039/C7TA04333C
 | 
																													
																						| 9 | 梁红玉, 李建中, 田彦文, 等.  不同g-C3N4/WO3异质结材料的制备及其光催化性能研究[J]. 石油化工高等学校学报, 2018, 31 (1): 23- 29. URL
 | 
																													
																						| 10 | Wang Pu ,  Lu Na ,  Su Yan .  Fabrication of WO3@g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light[J]. Applied Surface Science, 2017, 423, 197- 204. doi: 10.1016/j.apsusc.2017.06.127
 | 
																													
																						| 11 | 杨冬, 周致远, 丁菲, 等.  特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38 (1): 495- 504. URL
 | 
																													
																						| 12 | Liu Xin ,  Jin Ailing ,  Jia Yushuai .  Synergy of adsorption and visiblelight photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4[J]. Applied Surface Science, 2017, 405, 359- 371. doi: 10.1016/j.apsusc.2017.02.025
 | 
																													
																						| 13 | Meng Jie ,  Pei Jingyuan ,  He Zefang .  Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation[J]. RSC Advances, 2017, 7 (39): 24097- 24104. doi: 10.1039/C7RA02297B
 | 
																													
																						| 14 | Xiao Tingting ,  Tang Zheng ,  Yang Yong .  In situ construction of hierarchical WO3/g-C3N4, composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B:Environmental, 2018, 220, 417- 428. doi: 10.1016/j.apcatb.2017.08.070
 | 
																													
																						| 15 | 沈毅, 朱华, 黄荣, 等.  草酸诱导合成WO3粉体与其光致变色性质[J]. 中国科学:化学, 2010, 40 (1): 31- 36. URL
 | 
																													
																						| 16 | 张钰, 何燕, 邹彩琼, 等.  铁锰矿类Fenton异相光催化降解有毒有机染料[J]. 环境化学, 2010, 29 (6): 1032- 1037. URL
 |