| 1 |
杨泽斌, 张旭斌, 吕国军, 等. 双助剂修饰WO3/g-C3N4及其光催化性能研究[J]. 现代化工, 2018, 38 (12): 149- 153.
URL
|
| 2 |
Li Wenzhang , Zhan Faqi , Jie Li , et al. Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes[J]. Electrochimica Acta, 2015, 160, 57- 63.
doi: 10.1016/j.electacta.2015.01.095
|
| 3 |
Shukla S , Chaudhary S , Umar A , et al. Surfactant functionalized tungsten oxide nanoparticles with enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2016, 288, 423- 431.
doi: 10.1016/j.cej.2015.12.039
|
| 4 |
Tahir M B , Nabi G , Rafique M , et al. Nanostructured-based WO3 photocatalysts:Recent development, activity enhancement, perspectives and applications for wastewater treatment[J]. International Journal of Environmental Science and Technology, 2017, 14 (11): 2519- 2542.
doi: 10.1007/s13762-017-1394-z
|
| 5 |
Ding J R , Kim K S . 1-D WO3@BiVO4 heterojunctions with highly enhanced photoelectrochemical performance[J]. Chemical Engineering Journal, 2018, 334, 1650- 1656.
doi: 10.1016/j.cej.2017.11.130
|
| 6 |
Wang Xingang , Zhang Huailong , Liu Lili , et al. Controlled morphologies and growth direction of WO3 nanostructures hydrothermally synthesized with citric acid[J]. Materials Letters, 2014, 130, 248- 251.
doi: 10.1016/j.matlet.2014.05.138
|
| 7 |
Zhang Ning , Chen Chen , Mei Zongwei , et al. Monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations[J]. ACS Appl. Mater. Interfaces, 2016, 8 (16): 10367- 10374.
doi: 10.1021/acsami.6b02275
|
| 8 |
Liang Zhiyu , Wei Jinxin , Wang Xiu . Elegant Z-scheme-dictated g-C3N4 enwrapped WO3 superstructures:A multifarious platform for versatile photoredox catalysis[J]. Journal of Materials Chemistry A, 2017, 5 (30): 15601- 15612.
doi: 10.1039/C7TA04333C
|
| 9 |
梁红玉, 李建中, 田彦文, 等. 不同g-C3N4/WO3异质结材料的制备及其光催化性能研究[J]. 石油化工高等学校学报, 2018, 31 (1): 23- 29.
URL
|
| 10 |
Wang Pu , Lu Na , Su Yan . Fabrication of WO3@g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light[J]. Applied Surface Science, 2017, 423, 197- 204.
doi: 10.1016/j.apsusc.2017.06.127
|
| 11 |
杨冬, 周致远, 丁菲, 等. 特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38 (1): 495- 504.
URL
|
| 12 |
Liu Xin , Jin Ailing , Jia Yushuai . Synergy of adsorption and visiblelight photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4[J]. Applied Surface Science, 2017, 405, 359- 371.
doi: 10.1016/j.apsusc.2017.02.025
|
| 13 |
Meng Jie , Pei Jingyuan , He Zefang . Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation[J]. RSC Advances, 2017, 7 (39): 24097- 24104.
doi: 10.1039/C7RA02297B
|
| 14 |
Xiao Tingting , Tang Zheng , Yang Yong . In situ construction of hierarchical WO3/g-C3N4, composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B:Environmental, 2018, 220, 417- 428.
doi: 10.1016/j.apcatb.2017.08.070
|
| 15 |
沈毅, 朱华, 黄荣, 等. 草酸诱导合成WO3粉体与其光致变色性质[J]. 中国科学:化学, 2010, 40 (1): 31- 36.
URL
|
| 16 |
张钰, 何燕, 邹彩琼, 等. 铁锰矿类Fenton异相光催化降解有毒有机染料[J]. 环境化学, 2010, 29 (6): 1032- 1037.
URL
|