| 1 | Gao Zechen ,  Lin Yili ,  Xu Bin , et al.  Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process[J]. Water Research, 2019, 154, 199- 209. URL
 | 
																													
																						| 2 | Li Chunjie ,  Dong Yang ,  Wu Deyi , et al.  Surfactant modified zeolite as adsorbent for removal of humic acid from water[J]. Applied Clay Science, 2011, 52 (4): 353- 357. URL
 | 
																													
																						| 3 | Shan Lili ,  Liu Junfeng ,  Yu Yanling , et al.  Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater[J]. Environmental Science and Pollution Research, 2016, 23 (10): 10215- 10222. URL
 | 
																													
																						| 4 | Ma Baiwen ,  Li Wenjiang ,  Liu Ruiping , et al.  Multiple dynamic Al-based floc layers on ultrafiltration membrane surfaces for humic acid and reservoir water fouling reduction[J]. Water Research, 2018, 139, 291- 300. URL
 | 
																													
																						| 5 | Oskoei V ,  Dehghani M H ,  Nazmara S , et al.  Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption[J]. Journal of Molecular Liquids, 2016, 213, 374- 380. URL
 | 
																													
																						| 6 | AsahiR ,  Morikawa T ,  Ohwaki T , et al.  Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293 (5528): 269- 271. URL
 | 
																													
																						| 7 | Schneider J ,  Matsuoka M ,  Takeuchi M , et al.  Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114 (19): 9919- 9986. URL
 | 
																													
																						| 8 | Alvarez P M ,  Jaramillo J ,  López-pinero F , et al.  Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water[J]. Applied Catalysis B:Environmental, 2010, 100 (1/2): 338- 345. URL
 | 
																													
																						| 9 | 师艳婷, 乔生莉, 张巧玲, 等.  磁性光催化剂Fe3O4/SiO2/TiO2的制备及光催化降解苯酚[J]. 化工进展, 2018, 37 (11): 4322- 4329. URL
 | 
																													
																						| 10 | 陈卫, 赵磊, 许航, 等.  TiO2/AC光催化剂对卡马西平的降解特性[J]. 土木建筑与环境工程, 2012, 34 (5): 1674- 4764. URL
 | 
																													
																						| 11 | Li Qunyan ,  Ma Kairui ,  Ma Zijun , et al.  Preparation and enhanced photocatalytic performance of a novel photocatalyst:Hollow network Fe3O4/mesoporous SiO2/TiO2(FST) composite microspheres[J]. Microporous and Mesoporous Materials, 2018, 265, 18- 25. | 
																													
																						| 12 | Mirzahedayat B ,  Noorisepehr M ,  Dehghanifard E , et al.  Evaluation of photocatalytic degradation of 2, 4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles[J]. Journal of Molecular Liquids, 2018, 264, 571- 578. URL
 | 
																													
																						| 13 | 庞月红, 刘娟, 孙梦梦, 等.  TiO2/生物质活性炭复合材料的制备和吸附光降解性能[J]. 化学通报, 2018, 81 (5): 433- 438. URL
 | 
																													
																						| 14 | 郝彤遥, 罗晓, 赵彦, 等.  石墨烯负载TiO2光催化降解阿奇霉素废水[J]. 工业水处理, 2019, 39 (3): 84- 87. URL
 | 
																													
																						| 15 | Monteagudo J M ,  Durán A ,  San M I , et al.  Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis[J]. Chemical Engineering Journal, 2019, 364, 257- 268. | 
																													
																						| 16 | 郑直.两种活性炭负载型TiO2光催化剂对腐殖酸的光催化降解特征[D].西安: 西安建筑科技大学, 2017. URL
 | 
																													
																						| 17 | Zhou Xiao ,  Zhou Shaoqi ,  Ma Fuzhen , et al.  Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid[J]. Journal of Environmental Management, 2019, 235, 293- 302. URL
 |