1 |
Ji Qinhong , Tabassum S , Hena S , et al. A review on the coal gasification wastewater treatment technologies: Past, present and future outlook[J]. Journal of Cleaner Production, 2016, 126, 38- 55.
URL
|
2 |
刘尚超, 薛改凤, 张垒, 等. 焦化废水处理技术研究进展[J]. 工业水处理, 2012, 32 (1): 15- 17.
doi: 10.3969/j.issn.1005-829X.2012.01.004
|
3 |
Li Jianfeng , Wu Jing , Sun Huifang , et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation[J]. Desalination, 2016, 380, 43- 51.
doi: 10.1016/j.desal.2015.11.020
|
4 |
任源, 韦朝海, 吴超飞, 等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报, 2007, 27 (7): 1094- 1100.
doi: 10.3321/j.issn:0253-2468.2007.07.004
|
5 |
冯玉杰, 崔玉虹, 孙丽欣, 等. 电化学废水处理技术及高效电催化电极的研究与进展[J]. 哈尔滨工业大学学报, 2004, 36 (4): 450- 455.
doi: 10.3321/j.issn:0367-6234.2004.04.011
|
6 |
Zhuo Qiongfang , Deng Shubo , Yang Bo , et al. Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode[J]. Environmental Science & Technology, 2011, 45 (7): 2973- 2979.
URL
|
7 |
Chaplin B P . Critical review of electrochemical advanced oxidation processes for water treatment applications[J]. Environmental Science Processes & Impacts, 2014, 16 (6): 1182- 1203.
|
8 |
Miklos D B , Remy C , Jekel M , et al. Evaluation of advanced oxidation processes for water and wastewater treatment: A critical review[J]. Water Research, 2018, 139, 118- 131.
URL
|
9 |
刘美琴, 宋秀兰. Fe2+激活过硫酸盐耦合活性炭深度处理焦化废水[J]. 中国环境科学, 2018, 38 (4): 1377- 1384.
URL
|
10 |
张小璇, 任源, 韦朝海, 等. 焦化废水生物处理尾水中残余有机污染物的活性炭吸附及其机理[J]. 环境科学学报, 2007, 27 (7): 1113- 1120.
doi: 10.3321/j.issn:0253-2468.2007.07.007
|
11 |
Ma Dehua , Liu Cong , Zhu Xiaobiao , et al. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes[J]. Environmental Science and Pollution Research, 2016, 23 (18): 18343- 18352.
doi: 10.1007/s11356-016-6882-z
|
12 |
Sun Dongni , Hong Xiaoting , Wu Keming , et al. Simultaneous removal of ammonia and phosphate by electro-oxidation and electrocoagulation using RuO2-IrO2/Ti and microscale zero-valent iron composite electrode[J]. Water Research, 2020, 169, 115239.
doi: 10.1016/j.watres.2019.115239
|
13 |
滕厚开, 谢陈鑫. 电解催化氧化法处理含酚废水技术及机理研究[J]. 工业水处理, 2016, 36 (12): 90- 93.
doi: 10.11894/1005-829x.2016.36(12).022
|
14 |
Wang Yunting , Xue Yudong , Zhang Chunhui . Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance[J]. Science of the Total Environment, 2020, 712, 136501.
URL
|
15 |
冯壮壮, 王海东, 于建, 等. 电催化氧化深度处理焦化废水的效果及能耗研究[J]. 工业水处理, 2013, 33 (4): 61- 64.
URL
|
16 |
王栗, 岳琳, 郭建博, 等. FePMo12催化电化学反应降解染料废水的研究[J]. 环境科学, 2014, 35 (5): 1843- 1849.
URL
|
17 |
梁志超. 电解氧化法对纳滤膜处理模拟染料废水的影响[D]. 天津: 天津大学, 2010.
|
18 |
李亚莉, 李延辉, 臧昊良, 等. 活性炭/壳聚糖多孔小球作为去除阳离子染料的高效吸附剂: 等温线, 动力学和热力学研究[J]. 材料科学, 2018, 8 (7): 816- 827.
URL
|
19 |
Coble P G . Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51 (4): 325- 346.
|