| 1 | Rousseau D P ,  Vanrolleghem P A ,  De P N .  Model-based design of horizontal subsurface flow constructed treatment wetlands: A review[J]. Water Research, 2004, 38 (6): 1484- 1493. doi: 10.1016/j.watres.2003.12.013
 | 
																													
																						| 2 | 梁继东, 周启星, 孙铁衍.  人工湿地污水处理系统研究及性能改进分析[J]. 生态学杂志, 2003, 22 (2): 49- 55. doi: 10.3321/j.issn:1000-4890.2003.02.012
 | 
																													
																						| 3 | 张虎成, 田卫, 俞穆清, 等.  人工湿地生态系统处理污水研究进展[J]. 环境污染治理技术与设备, 2004, 5 (2): 11- 15. URL
 | 
																													
																						| 4 | Dennis K ,  Thammarrat K ,  Hans B .  Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia[J]. Ecological Engineering, 2009, 35 (2): 248- 257. doi: 10.1016/j.ecoleng.2008.04.018
 | 
																													
																						| 5 | Drizo A ,  Frost C A ,  Smith K A , et al.  Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate[J]. Water Science and Technology, 1997, 35 (5): 95- 102. doi: 10.2166/wst.1997.0173
 | 
																													
																						| 6 | 张清.  人工湿地的构建与应用[J]. 湿地科学, 2011, 7 (4): 373- 378. URL
 | 
																													
																						| 7 | Lin Yingfeng ,  Jing S ,  Lee D , et al.  Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates[J]. Bioresource Technology, 2008, 99 (16): 7504- 7513. doi: 10.1016/j.biortech.2008.02.017
 | 
																													
																						| 8 | Hernandez-Crespo C ,  Gargallo S ,  Benedito-Dura V , et al.  Performance of surface and subsurface flow constructed wetlands treating eutrophic waters[J]. Science of the Total Environment, 2017, 595, 584- 593. doi: 10.1016/j.scitotenv.2017.03.278
 | 
																													
																						| 9 | Ballantine D J ,  Tanner C C .  Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review[J]. New Zealand Journal of Agricultural Research, 2010, 53, 71- 95. doi: 10.1080/00288231003685843
 | 
																													
																						| 10 | 尹炜, 李培军, 叶闽, 等.  复合潜流人工湿地处理城市地表径流研究[J]. 中国给水排水, 2006, 22 (1): 5- 8. doi: 10.3321/j.issn:1000-4602.2006.01.002
 | 
																													
																						| 11 | 管策, 郁达伟, 郑祥, 等.  我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J]. 农业环境科学学报, 2012, 31 (12): 2309- 2320. URL
 | 
																													
																						| 12 | 张丽, 朱晓东, 邹家庆.  人工湿地深度处理城市污水处理厂尾水[J]. 工业水处理, 2008, 28 (1): 85- 87. doi: 10.3969/j.issn.1005-829X.2008.01.027
 | 
																													
																						| 13 | 赵安娜, 柯凡, 郭萧, 等.  复合型人工湿地模型对污水厂尾水的深度净化效果[J]. 生态与农村环境学报, 2010, 26 (6): 579- 585. doi: 10.3969/j.issn.1673-4831.2010.06.013
 | 
																													
																						| 14 | Parde D ,  Patwa A ,  Amol Shukla A , et al.  A review of constructed wetland on type, treatment and technology of wastewater[J]. Environmental Technology & Innovation, 2021, 21, 101261. | 
																													
																						| 15 | Zhang Hong ,  Tang Wenzhong ,  Wang Weidong , et al.  A review on China's constructed wetlands in recent three decades: Application and practice[J]. Journal of Environmental Sciences, 2021, 104, 53- 68. doi: 10.1016/j.jes.2020.11.032
 | 
																													
																						| 16 | Kataki S ,  Chatterjee S ,  Vairale M G , et al.  Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology(macrophyte, biolfilm and substrate)[J]. Journal of Environmental Management, 2021, 283 (28): 111986. URL
 | 
																													
																						| 17 | 成水平, 王月圆, 吴娟.  人工湿地研究现状与展望[J]. 湖泊科学, 2019, 31 (6): 1489- 1498. URL
 | 
																													
																						| 18 | 杨长明, 马锐, 山城幸, 等.  组合人工湿地对城镇污水处理厂尾水中有机物的去除特征研究[J]. 环境科学学报, 2010, 30 (9): 1804- 1810. URL
 | 
																													
																						| 19 | 杨长明, 马锐, 汪盟盟, 等.  潜流人工湿地对污水厂尾水中有机物去除效果[J]. 同济大学学报(自然科学版), 2012, 40 (8): 1210- 1216. doi: 10.3969/j.issn.0253-374x.2012.08.015
 | 
																													
																						| 20 | 谢龙, 汪德爟, 戴昱.  水平潜流人工湿地有机物去除模型研究[J]. 中国环境科学, 2009, 29 (5): 502- 505. doi: 10.3321/j.issn:1000-6923.2009.05.010
 | 
																													
																						| 21 | Yang Changming ,  Wang Mengmeng ,  Ma Rui , et al.  Excitation-emission matrix fluorescence spectra characteristics of DOM in a subsurface constructed wetland for advanced treatment of municipal sewage plant effluent[J]. Spectroscopy and Spectral Analysis, 2012, 32 (3): 708- 713. | 
																													
																						| 22 | 易志刚, 刘春常, 张倩媚, 等.  复合人工湿地对有机污染物的去除效果初步研究[J]. 生态环境, 2006, 15 (5): 945- 948. doi: 10.3969/j.issn.1674-5906.2006.05.011
 | 
																													
																						| 23 | 张甲耀, 夏盛林, 邱克明, 等.  潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J]. 环境科学学报, 1999, 19 (3): 323- 327. doi: 10.3321/j.issn:0253-2468.1999.03.019
 | 
																													
																						| 24 | Chen Yi ,  Wen Yue ,  Zhou Qi , et al.  Effects of plant biomass on denitrification genes in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2014, 157, 341- 345. doi: 10.1016/j.biortech.2014.01.137
 | 
																													
																						| 25 | Lee C ,  Fletcher T D ,  Sun Guangzhi .  Nitrogen removal in constructed wetland systems[J]. Engineering in Life Science, 2009, 9 (1): 11- 22. doi: 10.1002/elsc.200800049
 | 
																													
																						| 26 | Sirivedhin T ,  Gray K A .  Factors affecting denitrification rates in experimental wetlands: Field and laboratory studies[J]. Ecolgoical Engineering, 2006, 26 (2): 167- 181. doi: 10.1016/j.ecoleng.2005.09.001
 | 
																													
																						| 27 | 卢少勇, 金相灿, 余刚.  人工湿地的氮去除机理[J]. 生态学报, 2006, 26 (8): 2670- 2677. doi: 10.3321/j.issn:1000-0933.2006.08.033
 | 
																													
																						| 28 | 张政, 付融冰, 顾国维, 等.  人工湿地脱氮途径及其影响因素分析[J]. 生态环境, 2006, 15 (6): 1385- 1390. doi: 10.3969/j.issn.1674-5906.2006.06.049
 | 
																													
																						| 29 | Seo D C ,  Cho J S ,  Lee H J , et al.  Phosphorous retention capacity of filter media for estimating the longevity of constructed wetland[J]. Water Research, 2005, 39 (11): 2445- 2457. doi: 10.1016/j.watres.2005.04.032
 | 
																													
																						| 30 | Prochaska C A ,  Zouboulis A I .  Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate[J]. Ecological Engineering, 2006, 26 (3): 293- 303. doi: 10.1016/j.ecoleng.2005.10.009
 | 
																													
																						| 31 | Arias C A ,  Brix H ,  Johansen N H .  Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetiand system equipped with a calcite filter[J]. Water Science and Technology, 2003, 48 (5): 51- 58. doi: 10.2166/wst.2003.0279
 | 
																													
																						| 32 | 杨长明, 顾国泉, 李建华, 等.  潜流人工湿地系统停留时间分布与N、P浓度空间变化[J]. 环境科学, 2008, 29 (11): 3043- 3048. doi: 10.3321/j.issn:0250-3301.2008.11.008
 | 
																													
																						| 33 | Dai Hongling ,  Hu Fengping .  Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems: A comparative study[J]. Polish Journal Environment Study, 2017, 26 (3): 1003- 1010. doi: 10.15244/pjoes/66708
 | 
																													
																						| 34 | Gottschall N ,  Boutin C ,  Crolla A , et al.  The role of plants in the removal of nutrients at a constructed wetland treating agricultural(dairy) wastewater, Ontario, Canada[J]. Ecological Engineering, 2007, 29 (2): 154- 163. doi: 10.1016/j.ecoleng.2006.06.004
 | 
																													
																						| 35 | Chung A K C ,  Wu Y ,  Tam N F Y .  Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater[J]. Ecological Engineering, 2008, 32 (1): 81- 89. doi: 10.1016/j.ecoleng.2007.09.007
 | 
																													
																						| 36 | Chen Yi ,  Wen Yue ,  Zhou Qi , et al.  Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment[J]. Water Research, 2014, 63, 158- 167. doi: 10.1016/j.watres.2014.06.015
 | 
																													
																						| 37 | Cheng S ,  Grosse W ,  Karrenbrock F , et al.  Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J]. Ecological Engineering, 2002, 18 (3): 317- 325. doi: 10.1016/S0925-8574(01)00091-X
 | 
																													
																						| 38 | Khan S ,  Ahmad I ,  Shah M T , et al.  Use of constructed wetland for the removal of heavy metals from industrial wastewater[J]. Journal of Environmental Management, 2009, 90 (11): 3451- 3457. doi: 10.1016/j.jenvman.2009.05.026
 | 
																													
																						| 39 | Zhao Min ,  Wang Sen ,  Wang Hongsheng , et al.  Application of sodium titanate nano fibers as constructed wetland filers for efficient removal of heavy metal ions from wastewater[J]. Environment Pollution, 2019, 248, 938- 946. doi: 10.1016/j.envpol.2019.02.040
 | 
																													
																						| 40 | Yu Guanlong ,  Wang Guoliang ,  Li Jianbing , et al.  Enhanced Cd2+ and Zn2+ removal from heavy metal wastewater in constructed wetlands with resistant microorganisms[J]. Bioresource Technology, 2020, 316, 123898. doi: 10.1016/j.biortech.2020.123898
 | 
																													
																						| 41 | Everardo V ,  Bruce L ,  Suresh D P .  Transport and survival of bacterial and viral tracers through submerged-flow constructed wetland and sand-filter system[J]. Bioresource Technology, 2003, 89 (1): 49- 56. doi: 10.1016/S0960-8524(03)00029-4
 | 
																													
																						| 42 | Decamp O ,  Warren A .  Investigation of E. coli. removal in various designs of subsurface flow wetlands used for wastewater treatment[J]. Ecological Engineering, 2000, 14 (3): 293- 299. doi: 10.1016/S0925-8574(99)00007-5
 | 
																													
																						| 43 | Wu Juan ,  Feng Yuqin ,  Dai Yanran , et al.  Biological mechanisms associated with triazophos(TAP) removal by horizontal subsurface flow constructed wetlands(HSFCW)[J]. Science of the Total Environment, 2016, 553, 13- 19. doi: 10.1016/j.scitotenv.2016.02.067
 | 
																													
																						| 44 | Wu Juan ,  Li Zhu ,  Wu Liang , et al.  Triazophos(TAP) removal in horizontal subsurface flow constructed wetlands(HSCWs) and its accumulation in plants and substrates[J]. Scientific Reports, 2017, 7 (1): 5468- 5476. doi: 10.1038/s41598-017-05874-0
 | 
																													
																						| 45 | 王亮, 程萍萍, 袁守军, 等.  人工湿地去除污水厂尾水中的营养元素和雌激素[J]. 环境工程学报, 2016, 10 (11): 6505- 6512. doi: 10.12030/j.cjee.201506140
 | 
																													
																						|  | 王圣瑞, 年跃刚, 侯文华, 等.  人工湿地植物的选择[J]. 湖泊科学, 2004, 16 (1): 91- 96. doi: 10.3321/j.issn:1003-5427.2004.01.015
 | 
																													
																						| 46 | Brix H .  Functions of macrophytes in constructed wetlands[J]. Water Science and Technology, 1994, 29 (4): 71- 78. doi: 10.2166/wst.1994.0160
 | 
																													
																						| 47 | Kadlec R H .  The effects of wetland vegetation and morphology on nitrogen processing[J]. Ecological Engineering, 2008, 33 (2): 126- 141. doi: 10.1016/j.ecoleng.2008.02.012
 | 
																													
																						| 48 | 易乃康, 彭开铭, 陆丽君, 等.  人工湿地植物对脱氮微生物活性的影响机制研究进展[J]. 水处理技术, 2016, 42 (4): 12- 16. URL
 | 
																													
																						| 49 | Adsock J .  The use of sub-suface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J]. Ecological Engineering, 2018, 18 (5): 633- 646. | 
																													
																						| 50 | 鲁敏, 刘顺腾, 郭振, 等.  人工湿地植物组合对生活污水的浊度净化效果研究[J]. 山东建筑大学学报, 2012, 7 (6): 545- 550. doi: 10.3969/j.issn.1673-7644.2012.06.001
 | 
																													
																						| 51 | Ge Ying ,  Han Wenjuan ,  Huang Chengcai , et al.  Positive effects of plant diversity on nitrogen removal in microcosms of constructed wetlands with high ammonium loading[J]. Ecological Engineering, 2015, 82, 614- 623. doi: 10.1016/j.ecoleng.2015.05.030
 | 
																													
																						| 52 | 余芃飞, 胡将军, 张列宇, 等.  多介质人工湿地提升再生水水质的工程实例[J]. 中国给水排水, 2015, 31 (4): 99- 101. URL
 | 
																													
																						| 53 | Ding Yanli ,  Lyu T ,  Bai Shaoyuan , et al.  Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: Assessment of treatment performance, biofilm development, and solids accumulation[J]. Environmental Science and Pollution Research, 2017, 25 (2): 1883- 1891. doi: 10.1007/s11356-017-0636-4
 | 
																													
																						| 54 | 袁东海, 景丽洁, 张孟群, 等.  几种人工湿地基质净化磷素的机理[J]. 中国环境科学, 2004, 24 (5): 614- 617. doi: 10.3321/j.issn:1000-6923.2004.05.025
 | 
																													
																						| 55 | 朱夕珍, 崔理华, 温晓露, 等.  不同基质垂直流人工湿地对城市污水的净化效果[J]. 农业环境科学学报, 2002, 22 (3): 282- 285. URL
 | 
																													
																						| 56 | 郭本华, 宋志文, 李捷, 等.  3种不同基质潜流湿地对磷的去除效果[J]. 环境污染治理技术与设备, 2006, 7 (1): 110- 113. URL
 | 
																													
																						| 57 | 张巍, 赵军, 郎咸明, 等.  人工湿地系统微生物去除污染物的研究进展[J]. 环境工程学报, 2010, 4 (4): 721- 728. URL
 | 
																													
																						| 58 | Wang Junfeng ,  Song Xinshan ,  Wang Yuhui , et al.  Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell[J]. Bioresource Technology, 2017, 245 (A): 372- 378. URL
 | 
																													
																						| 59 | 李振灵, 丁彦礼, 白少元, 等.  潜流人工湿地基质结构与微生物群落特征的相关性[J]. 环境科学, 2017, 38 (9): 3713- 3720. URL
 | 
																													
																						| 60 | Tee H ,  Lim P ,  Seng C , et al.  Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal[J]. Bioresource Technology, 2012, 104, 235- 242. doi: 10.1016/j.biortech.2011.11.032
 | 
																													
																						| 61 | Vymazal J .  Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment[J]. Ecological Engineering, 2005, 25 (5): 478- 490. doi: 10.1016/j.ecoleng.2005.07.010
 | 
																													
																						| 62 | 叶建锋, 徐祖信, 李怀正.  垂直潜流人工湿地堵塞机制: 堵塞成因及堵塞物积累规律[J]. 环境科学, 2008, 29 (6): 1508- 1512. doi: 10.3321/j.issn:0250-3301.2008.06.009
 | 
																													
																						| 63 | 雷明, 李凌云.  人工湿地土壤堵塞现象及机理探讨[J]. 工业水处理, 2004, 24 (10): 9- 12. URL
 | 
																													
																						| 64 | Knowles P ,  Dotro G ,  Nivala J , et al.  Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors[J]. Ecological Engineering, 2011, 37 (2): 99- 112. doi: 10.1016/j.ecoleng.2010.08.005
 | 
																													
																						| 65 | 韩瑞瑞, 袁林江, 孔海霞.  复合垂直流人工湿地净化污水厂二级出水的研究[J]. 中国给水排水, 2009, 25 (21): 50- 52. doi: 10.3321/j.issn:1000-4602.2009.21.014
 | 
																													
																						| 66 | Vymazal J ,  Kropfelová L .  Multistage hybrid constructed wetland for enhanced removal of nitrogen[J]. Ecological Engineering, 2015, 84, 202- 208. doi: 10.1016/j.ecoleng.2015.09.017
 | 
																													
																						| 67 | Vymazal J .  Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380 | 
																													
																						| 68 | 余志敏, 袁晓燕, 刘胜利, 等.  水力条件对复合人工湿地处理城市受污染河水效果的影响[J]. 环境工程学报, 2011, 5 (4): 757- 762. URL
 | 
																													
																						| 69 | Merino-Solis M L ,  Villegas E ,  de Anda J , et al.  The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland[J]. Water, 2015, 7 (3): 1149- 1163. URL
 | 
																													
																						| 70 | 王世和, 王薇, 俞燕.  水力条件对人工湿地处理效果的影响[J]. 东南大学学报: 自然科学版, 2003, 33 (3): 342- 346. URL
 | 
																													
																						| 71 | 靳同霞, 张永静, 王程丽, 等.  2种人工湿地的水力停留时间及净化效果[J]. 环境工程学报, 2012, 3 (6): 883- 890. URL
 | 
																													
																						| 72 | Hang Qianyu ,  Wang Haiyan ,  Chu Zhaosheng , et al.  Application of plant carbon source for denitrification by constructed wetland and bioreactor: Review of recent development[J]. Environmental Science and Pollution Research, 2016, 23 (9): 8260- 8274. doi: 10.1007/s11356-016-6324-y
 | 
																													
																						| 73 | Liu Gang ,  Wen Yue ,  Zhou Qi .  Advance of enhancement of denitrification in the constructed wetlands using external carbon sources[J]. Technology of Water Treatment, 2010, 36, 1- 5. URL
 | 
																													
																						| 74 | 冯延申, 黄天寅, 刘锋, 等.  反硝化脱氮新型外加碳源研究进展[J]. 现代化工, 2013, 33 (10): 52- 57. URL
 | 
																													
																						| 75 | 魏星, 朱伟, 赵联芳, 等.  植物秸秆作补充碳源对人工湿地脱氮效果的影响[J]. 湖泊科学, 2010, 22 (6): 916- 922. URL
 | 
																													
																						| 76 | Lu Songliu ,  Zhang Chen ,  Wang Guohua .  Study on the influence of enhanced carbon resource on denitrification in the constructed wetland[J]. Acta Scientiae Circumstantiae, 2011, 31 (9): 1949- 1954. | 
																													
																						| 77 | Zhang Changcheng ,  Yin Qi ,  Wen Yue , et al.  Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: The roles of plants and plant fermentation broth[J]. Ecolgocial Engineering, 2016, 91, 310- 316. doi: 10.1016/j.ecoleng.2016.02.039
 | 
																													
																						| 78 | Vymazal J .  Types of constructed wetlands for wastewater treatment: Their potential for nutrient removal[M]. Backhuys Publishers, 2001: 1- 93. | 
																													
																						| 79 | Tanveer S ,  Rumana A ,  Abdullah A M , et al.  Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh[J]. Chemosphere, 2013, 88 (9): 1065- 1073. | 
																													
																						| 80 | 吴树彪, 董仁杰.  人工湿地污水处理应用与研究进展[J]. 水处理技术, 2008, 34 (8): 5- 9. URL
 | 
																													
																						| 81 | 孙桂琴, 董瑞斌, 潘乐英, 等.  人工湿地污水处理技术及其在我国的应用[J]. 环境科学与技术, 2006, 29 (s8): 144- 146. URL
 | 
																													
																						| 82 | Flores L ,  Garcia J ,  Pena R , et al.  Carbon footprint of constructed wetlands for winery wastewater treatment[J]. Ecolgocial Engineering, 2020, 156, 105959. doi: 10.1016/j.ecoleng.2020.105959
 | 
																													
																						| 83 | Nuamah L A ,  Li Yiping ,  Pu Yashuai , et al.  Constructed wetlands, status, progress, and challenges. The need forcritical operational reassessment for a cleaner productive ecosystem[J]. Journal of Cleaner Production, 2020, 269, 122340. doi: 10.1016/j.jclepro.2020.122340
 |