1 |
Rousseau D P , Vanrolleghem P A , De P N . Model-based design of horizontal subsurface flow constructed treatment wetlands: A review[J]. Water Research, 2004, 38 (6): 1484- 1493.
doi: 10.1016/j.watres.2003.12.013
|
2 |
梁继东, 周启星, 孙铁衍. 人工湿地污水处理系统研究及性能改进分析[J]. 生态学杂志, 2003, 22 (2): 49- 55.
doi: 10.3321/j.issn:1000-4890.2003.02.012
|
3 |
张虎成, 田卫, 俞穆清, 等. 人工湿地生态系统处理污水研究进展[J]. 环境污染治理技术与设备, 2004, 5 (2): 11- 15.
URL
|
4 |
Dennis K , Thammarrat K , Hans B . Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia[J]. Ecological Engineering, 2009, 35 (2): 248- 257.
doi: 10.1016/j.ecoleng.2008.04.018
|
5 |
Drizo A , Frost C A , Smith K A , et al. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate[J]. Water Science and Technology, 1997, 35 (5): 95- 102.
doi: 10.2166/wst.1997.0173
|
6 |
张清. 人工湿地的构建与应用[J]. 湿地科学, 2011, 7 (4): 373- 378.
URL
|
7 |
Lin Yingfeng , Jing S , Lee D , et al. Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates[J]. Bioresource Technology, 2008, 99 (16): 7504- 7513.
doi: 10.1016/j.biortech.2008.02.017
|
8 |
Hernandez-Crespo C , Gargallo S , Benedito-Dura V , et al. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters[J]. Science of the Total Environment, 2017, 595, 584- 593.
doi: 10.1016/j.scitotenv.2017.03.278
|
9 |
Ballantine D J , Tanner C C . Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review[J]. New Zealand Journal of Agricultural Research, 2010, 53, 71- 95.
doi: 10.1080/00288231003685843
|
10 |
尹炜, 李培军, 叶闽, 等. 复合潜流人工湿地处理城市地表径流研究[J]. 中国给水排水, 2006, 22 (1): 5- 8.
doi: 10.3321/j.issn:1000-4602.2006.01.002
|
11 |
管策, 郁达伟, 郑祥, 等. 我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J]. 农业环境科学学报, 2012, 31 (12): 2309- 2320.
URL
|
12 |
张丽, 朱晓东, 邹家庆. 人工湿地深度处理城市污水处理厂尾水[J]. 工业水处理, 2008, 28 (1): 85- 87.
doi: 10.3969/j.issn.1005-829X.2008.01.027
|
13 |
赵安娜, 柯凡, 郭萧, 等. 复合型人工湿地模型对污水厂尾水的深度净化效果[J]. 生态与农村环境学报, 2010, 26 (6): 579- 585.
doi: 10.3969/j.issn.1673-4831.2010.06.013
|
14 |
Parde D , Patwa A , Amol Shukla A , et al. A review of constructed wetland on type, treatment and technology of wastewater[J]. Environmental Technology & Innovation, 2021, 21, 101261.
|
15 |
Zhang Hong , Tang Wenzhong , Wang Weidong , et al. A review on China's constructed wetlands in recent three decades: Application and practice[J]. Journal of Environmental Sciences, 2021, 104, 53- 68.
doi: 10.1016/j.jes.2020.11.032
|
16 |
Kataki S , Chatterjee S , Vairale M G , et al. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology(macrophyte, biolfilm and substrate)[J]. Journal of Environmental Management, 2021, 283 (28): 111986.
URL
|
17 |
成水平, 王月圆, 吴娟. 人工湿地研究现状与展望[J]. 湖泊科学, 2019, 31 (6): 1489- 1498.
URL
|
18 |
杨长明, 马锐, 山城幸, 等. 组合人工湿地对城镇污水处理厂尾水中有机物的去除特征研究[J]. 环境科学学报, 2010, 30 (9): 1804- 1810.
URL
|
19 |
杨长明, 马锐, 汪盟盟, 等. 潜流人工湿地对污水厂尾水中有机物去除效果[J]. 同济大学学报(自然科学版), 2012, 40 (8): 1210- 1216.
doi: 10.3969/j.issn.0253-374x.2012.08.015
|
20 |
谢龙, 汪德爟, 戴昱. 水平潜流人工湿地有机物去除模型研究[J]. 中国环境科学, 2009, 29 (5): 502- 505.
doi: 10.3321/j.issn:1000-6923.2009.05.010
|
21 |
Yang Changming , Wang Mengmeng , Ma Rui , et al. Excitation-emission matrix fluorescence spectra characteristics of DOM in a subsurface constructed wetland for advanced treatment of municipal sewage plant effluent[J]. Spectroscopy and Spectral Analysis, 2012, 32 (3): 708- 713.
|
22 |
易志刚, 刘春常, 张倩媚, 等. 复合人工湿地对有机污染物的去除效果初步研究[J]. 生态环境, 2006, 15 (5): 945- 948.
doi: 10.3969/j.issn.1674-5906.2006.05.011
|
23 |
张甲耀, 夏盛林, 邱克明, 等. 潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J]. 环境科学学报, 1999, 19 (3): 323- 327.
doi: 10.3321/j.issn:0253-2468.1999.03.019
|
24 |
Chen Yi , Wen Yue , Zhou Qi , et al. Effects of plant biomass on denitrification genes in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2014, 157, 341- 345.
doi: 10.1016/j.biortech.2014.01.137
|
25 |
Lee C , Fletcher T D , Sun Guangzhi . Nitrogen removal in constructed wetland systems[J]. Engineering in Life Science, 2009, 9 (1): 11- 22.
doi: 10.1002/elsc.200800049
|
26 |
Sirivedhin T , Gray K A . Factors affecting denitrification rates in experimental wetlands: Field and laboratory studies[J]. Ecolgoical Engineering, 2006, 26 (2): 167- 181.
doi: 10.1016/j.ecoleng.2005.09.001
|
27 |
卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26 (8): 2670- 2677.
doi: 10.3321/j.issn:1000-0933.2006.08.033
|
28 |
张政, 付融冰, 顾国维, 等. 人工湿地脱氮途径及其影响因素分析[J]. 生态环境, 2006, 15 (6): 1385- 1390.
doi: 10.3969/j.issn.1674-5906.2006.06.049
|
29 |
Seo D C , Cho J S , Lee H J , et al. Phosphorous retention capacity of filter media for estimating the longevity of constructed wetland[J]. Water Research, 2005, 39 (11): 2445- 2457.
doi: 10.1016/j.watres.2005.04.032
|
30 |
Prochaska C A , Zouboulis A I . Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate[J]. Ecological Engineering, 2006, 26 (3): 293- 303.
doi: 10.1016/j.ecoleng.2005.10.009
|
31 |
Arias C A , Brix H , Johansen N H . Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetiand system equipped with a calcite filter[J]. Water Science and Technology, 2003, 48 (5): 51- 58.
doi: 10.2166/wst.2003.0279
|
32 |
杨长明, 顾国泉, 李建华, 等. 潜流人工湿地系统停留时间分布与N、P浓度空间变化[J]. 环境科学, 2008, 29 (11): 3043- 3048.
doi: 10.3321/j.issn:0250-3301.2008.11.008
|
33 |
Dai Hongling , Hu Fengping . Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems: A comparative study[J]. Polish Journal Environment Study, 2017, 26 (3): 1003- 1010.
doi: 10.15244/pjoes/66708
|
34 |
Gottschall N , Boutin C , Crolla A , et al. The role of plants in the removal of nutrients at a constructed wetland treating agricultural(dairy) wastewater, Ontario, Canada[J]. Ecological Engineering, 2007, 29 (2): 154- 163.
doi: 10.1016/j.ecoleng.2006.06.004
|
35 |
Chung A K C , Wu Y , Tam N F Y . Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater[J]. Ecological Engineering, 2008, 32 (1): 81- 89.
doi: 10.1016/j.ecoleng.2007.09.007
|
36 |
Chen Yi , Wen Yue , Zhou Qi , et al. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment[J]. Water Research, 2014, 63, 158- 167.
doi: 10.1016/j.watres.2014.06.015
|
37 |
Cheng S , Grosse W , Karrenbrock F , et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J]. Ecological Engineering, 2002, 18 (3): 317- 325.
doi: 10.1016/S0925-8574(01)00091-X
|
38 |
Khan S , Ahmad I , Shah M T , et al. Use of constructed wetland for the removal of heavy metals from industrial wastewater[J]. Journal of Environmental Management, 2009, 90 (11): 3451- 3457.
doi: 10.1016/j.jenvman.2009.05.026
|
39 |
Zhao Min , Wang Sen , Wang Hongsheng , et al. Application of sodium titanate nano fibers as constructed wetland filers for efficient removal of heavy metal ions from wastewater[J]. Environment Pollution, 2019, 248, 938- 946.
doi: 10.1016/j.envpol.2019.02.040
|
40 |
Yu Guanlong , Wang Guoliang , Li Jianbing , et al. Enhanced Cd2+ and Zn2+ removal from heavy metal wastewater in constructed wetlands with resistant microorganisms[J]. Bioresource Technology, 2020, 316, 123898.
doi: 10.1016/j.biortech.2020.123898
|
41 |
Everardo V , Bruce L , Suresh D P . Transport and survival of bacterial and viral tracers through submerged-flow constructed wetland and sand-filter system[J]. Bioresource Technology, 2003, 89 (1): 49- 56.
doi: 10.1016/S0960-8524(03)00029-4
|
42 |
Decamp O , Warren A . Investigation of E. coli. removal in various designs of subsurface flow wetlands used for wastewater treatment[J]. Ecological Engineering, 2000, 14 (3): 293- 299.
doi: 10.1016/S0925-8574(99)00007-5
|
43 |
Wu Juan , Feng Yuqin , Dai Yanran , et al. Biological mechanisms associated with triazophos(TAP) removal by horizontal subsurface flow constructed wetlands(HSFCW)[J]. Science of the Total Environment, 2016, 553, 13- 19.
doi: 10.1016/j.scitotenv.2016.02.067
|
44 |
Wu Juan , Li Zhu , Wu Liang , et al. Triazophos(TAP) removal in horizontal subsurface flow constructed wetlands(HSCWs) and its accumulation in plants and substrates[J]. Scientific Reports, 2017, 7 (1): 5468- 5476.
doi: 10.1038/s41598-017-05874-0
|
45 |
王亮, 程萍萍, 袁守军, 等. 人工湿地去除污水厂尾水中的营养元素和雌激素[J]. 环境工程学报, 2016, 10 (11): 6505- 6512.
doi: 10.12030/j.cjee.201506140
|
|
王圣瑞, 年跃刚, 侯文华, 等. 人工湿地植物的选择[J]. 湖泊科学, 2004, 16 (1): 91- 96.
doi: 10.3321/j.issn:1003-5427.2004.01.015
|
46 |
Brix H . Functions of macrophytes in constructed wetlands[J]. Water Science and Technology, 1994, 29 (4): 71- 78.
doi: 10.2166/wst.1994.0160
|
47 |
Kadlec R H . The effects of wetland vegetation and morphology on nitrogen processing[J]. Ecological Engineering, 2008, 33 (2): 126- 141.
doi: 10.1016/j.ecoleng.2008.02.012
|
48 |
易乃康, 彭开铭, 陆丽君, 等. 人工湿地植物对脱氮微生物活性的影响机制研究进展[J]. 水处理技术, 2016, 42 (4): 12- 16.
URL
|
49 |
Adsock J . The use of sub-suface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J]. Ecological Engineering, 2018, 18 (5): 633- 646.
|
50 |
鲁敏, 刘顺腾, 郭振, 等. 人工湿地植物组合对生活污水的浊度净化效果研究[J]. 山东建筑大学学报, 2012, 7 (6): 545- 550.
doi: 10.3969/j.issn.1673-7644.2012.06.001
|
51 |
Ge Ying , Han Wenjuan , Huang Chengcai , et al. Positive effects of plant diversity on nitrogen removal in microcosms of constructed wetlands with high ammonium loading[J]. Ecological Engineering, 2015, 82, 614- 623.
doi: 10.1016/j.ecoleng.2015.05.030
|
52 |
余芃飞, 胡将军, 张列宇, 等. 多介质人工湿地提升再生水水质的工程实例[J]. 中国给水排水, 2015, 31 (4): 99- 101.
URL
|
53 |
Ding Yanli , Lyu T , Bai Shaoyuan , et al. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: Assessment of treatment performance, biofilm development, and solids accumulation[J]. Environmental Science and Pollution Research, 2017, 25 (2): 1883- 1891.
doi: 10.1007/s11356-017-0636-4
|
54 |
袁东海, 景丽洁, 张孟群, 等. 几种人工湿地基质净化磷素的机理[J]. 中国环境科学, 2004, 24 (5): 614- 617.
doi: 10.3321/j.issn:1000-6923.2004.05.025
|
55 |
朱夕珍, 崔理华, 温晓露, 等. 不同基质垂直流人工湿地对城市污水的净化效果[J]. 农业环境科学学报, 2002, 22 (3): 282- 285.
URL
|
56 |
郭本华, 宋志文, 李捷, 等. 3种不同基质潜流湿地对磷的去除效果[J]. 环境污染治理技术与设备, 2006, 7 (1): 110- 113.
URL
|
57 |
张巍, 赵军, 郎咸明, 等. 人工湿地系统微生物去除污染物的研究进展[J]. 环境工程学报, 2010, 4 (4): 721- 728.
URL
|
58 |
Wang Junfeng , Song Xinshan , Wang Yuhui , et al. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell[J]. Bioresource Technology, 2017, 245 (A): 372- 378.
URL
|
59 |
李振灵, 丁彦礼, 白少元, 等. 潜流人工湿地基质结构与微生物群落特征的相关性[J]. 环境科学, 2017, 38 (9): 3713- 3720.
URL
|
60 |
Tee H , Lim P , Seng C , et al. Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal[J]. Bioresource Technology, 2012, 104, 235- 242.
doi: 10.1016/j.biortech.2011.11.032
|
61 |
Vymazal J . Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment[J]. Ecological Engineering, 2005, 25 (5): 478- 490.
doi: 10.1016/j.ecoleng.2005.07.010
|
62 |
叶建锋, 徐祖信, 李怀正. 垂直潜流人工湿地堵塞机制: 堵塞成因及堵塞物积累规律[J]. 环境科学, 2008, 29 (6): 1508- 1512.
doi: 10.3321/j.issn:0250-3301.2008.06.009
|
63 |
雷明, 李凌云. 人工湿地土壤堵塞现象及机理探讨[J]. 工业水处理, 2004, 24 (10): 9- 12.
URL
|
64 |
Knowles P , Dotro G , Nivala J , et al. Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors[J]. Ecological Engineering, 2011, 37 (2): 99- 112.
doi: 10.1016/j.ecoleng.2010.08.005
|
65 |
韩瑞瑞, 袁林江, 孔海霞. 复合垂直流人工湿地净化污水厂二级出水的研究[J]. 中国给水排水, 2009, 25 (21): 50- 52.
doi: 10.3321/j.issn:1000-4602.2009.21.014
|
66 |
Vymazal J , Kropfelová L . Multistage hybrid constructed wetland for enhanced removal of nitrogen[J]. Ecological Engineering, 2015, 84, 202- 208.
doi: 10.1016/j.ecoleng.2015.09.017
|
67 |
Vymazal J . Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380
|
68 |
余志敏, 袁晓燕, 刘胜利, 等. 水力条件对复合人工湿地处理城市受污染河水效果的影响[J]. 环境工程学报, 2011, 5 (4): 757- 762.
URL
|
69 |
Merino-Solis M L , Villegas E , de Anda J , et al. The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland[J]. Water, 2015, 7 (3): 1149- 1163.
URL
|
70 |
王世和, 王薇, 俞燕. 水力条件对人工湿地处理效果的影响[J]. 东南大学学报: 自然科学版, 2003, 33 (3): 342- 346.
URL
|
71 |
靳同霞, 张永静, 王程丽, 等. 2种人工湿地的水力停留时间及净化效果[J]. 环境工程学报, 2012, 3 (6): 883- 890.
URL
|
72 |
Hang Qianyu , Wang Haiyan , Chu Zhaosheng , et al. Application of plant carbon source for denitrification by constructed wetland and bioreactor: Review of recent development[J]. Environmental Science and Pollution Research, 2016, 23 (9): 8260- 8274.
doi: 10.1007/s11356-016-6324-y
|
73 |
Liu Gang , Wen Yue , Zhou Qi . Advance of enhancement of denitrification in the constructed wetlands using external carbon sources[J]. Technology of Water Treatment, 2010, 36, 1- 5.
URL
|
74 |
冯延申, 黄天寅, 刘锋, 等. 反硝化脱氮新型外加碳源研究进展[J]. 现代化工, 2013, 33 (10): 52- 57.
URL
|
75 |
魏星, 朱伟, 赵联芳, 等. 植物秸秆作补充碳源对人工湿地脱氮效果的影响[J]. 湖泊科学, 2010, 22 (6): 916- 922.
URL
|
76 |
Lu Songliu , Zhang Chen , Wang Guohua . Study on the influence of enhanced carbon resource on denitrification in the constructed wetland[J]. Acta Scientiae Circumstantiae, 2011, 31 (9): 1949- 1954.
|
77 |
Zhang Changcheng , Yin Qi , Wen Yue , et al. Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: The roles of plants and plant fermentation broth[J]. Ecolgocial Engineering, 2016, 91, 310- 316.
doi: 10.1016/j.ecoleng.2016.02.039
|
78 |
Vymazal J . Types of constructed wetlands for wastewater treatment: Their potential for nutrient removal[M]. Backhuys Publishers, 2001: 1- 93.
|
79 |
Tanveer S , Rumana A , Abdullah A M , et al. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh[J]. Chemosphere, 2013, 88 (9): 1065- 1073.
|
80 |
吴树彪, 董仁杰. 人工湿地污水处理应用与研究进展[J]. 水处理技术, 2008, 34 (8): 5- 9.
URL
|
81 |
孙桂琴, 董瑞斌, 潘乐英, 等. 人工湿地污水处理技术及其在我国的应用[J]. 环境科学与技术, 2006, 29 (s8): 144- 146.
URL
|
82 |
Flores L , Garcia J , Pena R , et al. Carbon footprint of constructed wetlands for winery wastewater treatment[J]. Ecolgocial Engineering, 2020, 156, 105959.
doi: 10.1016/j.ecoleng.2020.105959
|
83 |
Nuamah L A , Li Yiping , Pu Yashuai , et al. Constructed wetlands, status, progress, and challenges. The need forcritical operational reassessment for a cleaner productive ecosystem[J]. Journal of Cleaner Production, 2020, 269, 122340.
doi: 10.1016/j.jclepro.2020.122340
|