| 1 |  SUN Lu, GUO Dengkui , LIU Ke ,et al. Levels,sources,and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan,China[J]. CATENA ,2019 ,175 :101-109. doi:10.1016/j.catena.2018.12.014 | 
																													
																						| 2 |  SHAHEEN S M, ANTONIADIS V , KWON E ,et al. Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils:A case study from the temperate region(Germany) and the arid region(Egypt)[J]. Environmental Pollution ,2020 ,262 :114312. doi:10.1016/j.envpol.2020.114312 | 
																													
																						| 3 |  XIA Shaopan, SONG Zhaoliang , JEYAKUMAR P ,et al. A critical review on bioremediation technologies for Cr(Ⅵ)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology ,2019 ,49 (12):1027-1078. doi:10.1080/10643389.2018.1564526 | 
																													
																						| 4 |  SHAHID M, SHAMSHAD S , RAFIQ M ,et al. Chromium speciation,bioavailability,uptake,toxicity and detoxification in soil-plant system:A review[J]. Chemosphere ,2017 ,178 :513-533. doi:10.1016/j.chemosphere.2017.03.074 | 
																													
																						| 5 |  SAHA R, NANDI R , SAHA B . Sources and toxicity of hexavalent chromium[J]. Journal of Coordination Chemistry ,2011 ,64 (10):1782-1806. doi:10.1080/00958972.2011.583646 | 
																													
																						| 6 |  MALAVIYA P, SINGH A . Physicochemical technologies for remediation of chromium-containing waters and wastewaters[J]. Critical Reviews in Environmental Science and Technology ,2011 ,41 (12):1111-1172. doi:10.1080/10643380903392817 | 
																													
																						| 7 |  ACKERLEY D F, GONZALEZ C F , PARK C H ,et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida  and Escherichia coli  [J]. Applied and Environmental Microbiology ,2004 ,70 (2):873-882. doi:10.1128/aem.70.2.873-882.2004 | 
																													
																						| 8 |  THACKER U, PARIKH R , SHOUCHE Y ,et al. Hexavalent chromium reduction by Providencia  sp.[J]. Process Biochemistry ,2006 ,41 (6):1332-1337. doi:10.1016/j.procbio.2006.01.006 | 
																													
																						| 9 |  THACKER U, PARIKH R , SHOUCHE Y ,et al. Reduction of chromate by cell-free extract of Brucella  sp. isolated from Cr(Ⅵ) contaminated sites[J]. Bioresource Technology ,2007 ,98 (8):1541-1547. doi:10.1016/j.biortech.2006.06.011 | 
																													
																						| 10 |  SILVA B, FIGUEIREDO H , QUINTELAS C ,et al. Improved biosorption for Cr(Ⅵ) reduction and removal by Arthrobacter viscosus  using zeolite[J]. International Biodeterioration & Biodegradation ,2012 ,74 :116-123. doi:10.1016/j.ibiod.2012.05.026 | 
																													
																						| 11 |  BANERJEE S, MISRA A , CHAUDHURY S ,et al. A Bacillus  strain TCL isolated from Jharia coalmine with remarkable stress responses,chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials ,2019 ,367 :215-223. doi:10.1016/j.jhazmat.2018.12.038 | 
																													
																						| 12 |  KARTHIK C, BARATHI S , PUGAZHENDHI A ,et al. Evaluation of Cr(Ⅵ) reduction mechanism and removal by Cellulosimicrobium funkei  strain AR8,a novel haloalkaliphilic bacterium[J]. Journal of Hazardous Materials ,2017 ,333 :42-53. doi:10.1016/j.jhazmat.2017.03.037 | 
																													
																						| 13 |  LONG Bibo, YE Jien , YE Zhe ,et al. Cr(Ⅵ) removal by Penicillium oxalicum  SL2:Reduction with acidic metabolites and form transformation in the mycelium[J]. Chemosphere ,2020 ,253 :126731. doi:10.1016/j.chemosphere.2020.126731 | 
																													
																						| 14 |  VAJPAI S, TAYLOR P E , ADHOLEYA A ,et al. Chromium tolerance and accumulation in Aspergillus flavus  isolated from tannery effluent[J]. Journal of Basic Microbiology ,2020 ,60 (1):58-71. doi:10.1002/jobm.201900389 | 
																													
																						| 15 |  CÁRDENAS-GONZÁLEZ J F, ACOSTA-RODRÍGUEZ I . Hexavalent chromium removal by a Paecilomyces  sp. fungal strain isolated from environment[J]. Bioinorganic Chemistry and Applications ,2010 ,2010 :676243. doi:10.1155/2010/676243 | 
																													
																						| 16 |  RUSINOVA-VIDEVA S, NACHKOVA S , ADAMOV A ,et al. Antarctic yeast Cryptococcus laurentii (AL 65):Biomass and exopolysaccharide production and biosorption of metals[J]. Journal of Chemical Technology & Biotechnology ,2020 ,95 (5):1372-1379. doi:10.1002/jctb.6321 | 
																													
																						| 17 |  HE Baoyan, YIN Hua , YANG Feng ,et al. Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis  and Candida lipolytica  [J]. Journal of Central South University ,2012 ,19 (6):1693-1701. doi:10.1007/s11771-012-1195-y | 
																													
																						| 18 |  ELYSTIA S, EDWARD H S , PUTRI A E . Removal of chromium(Ⅵ) and chromium(Ⅲ) by using chlorella  sp. immobilized at electroplating wastewater[J]. IOP Conference Series:Earth and Environmental Science ,2020 ,515 (1):012078. doi:10.1088/1755-1315/515/1/012078 | 
																													
																						| 19 | 王岩,代群威,陈国华,等. 藻类吸附剂对六价铬的吸附特性[J]. 环境工程学报,2014,8(5):1769-1774. | 
																													
																						|  |  WANG Yan,  DAI Qunwei,  CHEN Guohua,et al. Cr(Ⅵ) adsorption characteristic of alga adsorbent[J]. Chinese Journal of Environmental Engineering,2014,8(5):1769-1774. | 
																													
																						| 20 |  CHEN J M, HAO O J . Microbial chromium(Ⅵ) reduction[J]. Critical Reviews in Environmental Science and Technology ,1998 ,28 (3):219-251. doi:10.1080/10643389891254214 | 
																													
																						| 21 |  WANG P C, MORI T , KOMORI K ,et al. Isolation and characterization of an Enterobacter cloacae  strain that reduces hexavalent chromium under anaerobic conditions[J]. Applied and Environmental Microbiology ,1989 ,55 (7):1665-1669. doi:10.1128/aem.55.7.1665-1669.1989 | 
																													
																						| 22 |  MALAVIYA P, SINGH A . Bioremediation of chromium solutions and chromium containing wastewaters[J]. Critical Reviews in Microbiology ,2016 ,42 (4):607-633. doi:10.3109/1040841x.2014.974501 | 
																													
																						| 23 |  THATOI H,DAS S, MISHRA J ,et al. Bacterial chromate reductase,a potential enzyme for bioremediation of hexavalent chromium:A review[J]. Journal of Environmental Management ,2014 ,146 :383-399. doi:10.1016/j.jenvman.2014.07.014 | 
																													
																						| 24 | 王春,童辉,华健,等. 铬取代针铁矿异化铁还原过程及铬的环境行为研究[J]. 生态环境学报,2020,29(9):1883-1889. | 
																													
																						|  |  WANG Chun,  TONG Hui,  HUA Jian,et al. Dissimilatory reduction of Cr-substituted goethite and its effect on Cr behavior[J]. Ecology and Environmental Sciences,2020,29(9):1883-1889. | 
																													
																						| 25 |  LI Xilin, FAN Ming , LIU Ling ,et al. Treatment of high-concentration chromium-containing wastewater by sulfate-reducing bacteria acclimated with ethanol[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research ,2019 ,80 (12):2362-2372. doi:10.2166/wst.2020.057 | 
																													
																						| 26 |  CHARDIN B, GIUDICI-ORTICONI M T , DE LUCA G ,et al. Hydrogenases in sulfate-reducing bacteria function as chromium reductase[J]. Applied Microbiology and Biotechnology ,2003 ,63 (3):315-321. doi:10.1007/s00253-003-1390-8 | 
																													
																						| 27 |  ZAWADZKA A M, CRAWFORD R L , PASZCZYNSKI A J . Pyridine-2,6-bis(thiocarboxylic acid) produced by pseudomonas stutzeri  KC reduces chromium(Ⅵ) and precipitates mercury,cadmium,lead and arsenic[J]. BioMetals ,2007 ,20 (2):145-158. doi:10.1007/s10534-006-9022-2 | 
																													
																						| 28 |  NAYAK S, RANGABHASHIYAM S , BALASUBRAMANIAN P ,et al. A review of chromite mining in Sukinda Valley of India:Impact and potential remediation measures[J]. International Journal of Phytoremediation ,2020 ,22 (8):804-818. doi:10.1080/15226514.2020.1717432 | 
																													
																						| 29 |  RAHMAN Z, SINGH V P . Bioremediation of toxic heavy metals(THMs) contaminated sites:Concepts,applications and challenges[J]. Environmental Science and Pollution Research International ,2020 ,27 (22):27563-27581. doi:10.1007/s11356-020-08903-0 | 
																													
																						| 30 |  GU Yanling, XU Weihua , LIU Yunguo ,et al. Mechanism of Cr(Ⅵ) reduction by Aspergillus niger :Enzymatic characteristic,oxidative stress response,and reduction product[J]. Environmental Science and Pollution Research International ,2015 ,22 (8):6271-6279. doi:10.1007/s11356-014-3856-x | 
																													
																						| 31 |  VENDRUSCOLO F, ROCHA FERREIRA G L DA , ANTONIOSI FILHO N R . Biosorption of hexavalent chromium by microorganisms[J]. International Biodeterioration & Biodegradation ,2017 ,119 :87-95. doi:10.1016/j.ibiod.2016.10.008 | 
																													
																						| 32 |  ASRI M, ELABED S , ELABED A ,et al. Effect of putrescine on cell surface properties of Wickerhamomyces anomalus :Performance on Cr(Ⅵ) biosorption[J]. Environmental Engineering Science ,2019 ,36 (4):396-404. doi:10.1089/ees.2018.0454 | 
																													
																						| 33 |  PUSHKAR B, SEVAK P , PARAB S ,et al. Chromium pollution and its bioremediation mechanisms in bacteria:A review[J]. Journal of Environmental Management ,2021 ,287 :112279. doi:10.1016/j.jenvman.2021.112279 | 
																													
																						| 34 |  FANG Ge, LI Weifeng , SHEN Xiaomei ,et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria[J]. Nature Communications ,2018 ,9 :129. doi:10.1038/s41467-017-02502-3 | 
																													
																						| 35 |  HAN Xu, WONG Y S , WONG M H ,et al. Biosorption and bioreduction of Cr(Ⅵ) by a microalgal isolate,Chlorella miniata  [J]. Journal of Hazardous Materials ,2007 ,146 (1/2):65-72. doi:10.1016/j.jhazmat.2006.11.053 | 
																													
																						| 36 |  COLLA L M, DAL’MAGRO C , DE ROSSI A ,et al. Potential of live Spirulina platensis  on biosorption of hexavalent chromium and its conversion to trivalent chromium[J]. International Journal of Phytoremediation ,2015 ,17 (9):861-868. doi:10.1080/15226514.2014.964846 | 
																													
																						| 37 |  JAAFARI J, YAGHMAEIAN K . Optimization of heavy metal biosorption onto freshwater algae(Chlorella coloniales ) using response surface methodology(RSM)[J]. Chemosphere ,2019 ,217 :447-455. doi:10.1016/j.chemosphere.2018.10.205 | 
																													
																						| 38 |  LEBRON Y A R, MOREIRA V R , SANTOS L V S . Studies on dye biosorption enhancement by chemically modified Fucus vesiculosus ,Spirulina maxima  and Chlorella pyrenoidosa algae  [J]. Journal of Cleaner Production ,2019 ,240 :118197. doi:10.1016/j.jclepro.2019.118197 | 
																													
																						| 39 |  DIXIT R,WASIULLAH, MALAVIYA D ,et al. Bioremediation of heavy metals from soil and aquatic environment:An overview of principles and criteria of fundamental processes[J]. Sustainability ,2015 ,7 (2):2189-2212. doi:10.3390/su7022189 | 
																													
																						| 40 |  OJUEDERIE O B, BABALOLA O O . Microbial and plant-assisted bioremediation of heavy metal polluted environments:A review[J]. International Journal of Environmental Research and Public Health ,2017 ,14 (12):1504. doi:10.3390/ijerph14121504 | 
																													
																						| 41 |  REDONDO-GÓMEZ S, MATEOS-NARANJO E , VECINO-BUENO I ,et al. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator,Spartina argentinensis  [J]. Journal of Hazardous Materials ,2011 ,185 (2/3):862-869. doi:10.1016/j.jhazmat.2010.09.101 | 
																													
																						| 42 |  | 
																													
																						|  |  LIU Ziqi, WANG Fang , WANG Aili . Research on the adsorption of Cr(Ⅵ) by modified submerged plant Potamogeton crispus  [J]. Industrial Water Treatment ,2019 ,39 (3):38-41. doi:10.11894/1005-829x.2019.39(3).038 | 
																													
																						| 43 | 张铁军,李博,韩剑宏,等. 磁性改性玉米秸秆材料吸附铬的性能及机理研究[J]. 工业水处理,2020,40(12):100-105. | 
																													
																						|  |  ZHANG Tiejun,  LI Bo,  HAN Jianhong,et al. Study on adsorption performance and mechanism of chromium on magnetic modified corn stalk[J]. Industrial Water Treatment,2020,40(12):100-105. | 
																													
																						| 44 |  JABEEN R, AHMAD A , IQBAL M . Phytoremediation of heavy metals:Physiological and molecular mechanisms[J]. The Botanical Review ,2009 ,75 (4):339-364. doi:10.1007/s12229-009-9036-x | 
																													
																						| 45 |  GAO Jie, WU Shimin , LIU Ying ,et al. Characterization and transcriptomic analysis of a highly Cr(Ⅵ)-resistant and -reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila  DSM14405T[J]. Environmental Pollution ,2020 ,263 :114622. doi:10.1016/j.envpol.2020.114622 | 
																													
																						| 46 |  AHEMAD M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria[J]. Journal of Genetic Engineering and Biotechnology ,2015 ,13 (1):51-58. doi:10.1016/j.jgeb.2015.02.001 | 
																													
																						| 47 |  KIM Y,ROH Y. Environmental application of biogenic magnetite nanoparticles to remediate chromium(Ⅲ/Ⅵ)-contaminated water[J]. Minerals ,2019 ,9 (5):260. doi:10.3390/min9050260 | 
																													
																						| 48 |  MUKHERJEE T, CHAKRABORTY S , BISWAS A A ,et al. Bioremediation potential of arsenic by non-enzymatically biofabricated silver nanoparticles adhered to the mesoporous carbonized fungal cell surface of Aspergillus foetidus  MTCC8876[J]. Journal of Environmental Management ,2017 ,201 :435-446. doi:10.1016/j.jenvman.2017.06.030 | 
																													
																						| 49 | K V G R, ARGULWAR S , SUDAKARAN S V ,et al. Nano-bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition[J]. Environmental Technology & Innovation ,2018 ,9 :122-133. doi:10.1016/j.eti.2017.11.006 |