1 |
NSENGA KUMWIMBA M, LOTTI T, ŞENEL E,et al. Anammox-based processes:How far have we come and what work remains?A review by bibliometric analysis[J]. Chemosphere, 2020, 238:124627. doi: 10.1016/j.chemosphere.2019.124627
|
2 |
MULDER A, VAN DE GRAAF A A, ROBERTSON L A,et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3):177-183. doi: 10.1111/j.1574-6941.1995.tb00281.x
|
3 |
ALI M, OKABE S. Anammox-based technologies for nitrogen removal:Advances in process start-up and remaining issues[J]. Chemosphere, 2015, 141:144-153. doi: 10.1016/j.chemosphere.2015.06.094
|
4 |
JIN Rencun, YU Jinjin, MA Chun,et al. Transient and long-term effects of bicarbonate on the ANAMMOX process[J]. Applied Microbiology and Biotechnology, 2014, 98(3):1377-1388. doi: 10.1007/s00253-013-5004-9
|
5 |
VAN DER STAR W R L, VAN DE GRAAF M J, KARTAL B,et al. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine[J]. Applied and Environmental Microbiology, 2008, 74(14):4417-4426. doi: 10.1128/aem.00042-08
|
6 |
YANG Jiachun, ZHANG Li, FUKUZAKI Y,et al. High-rate nitrogen removal by the anammox process with a sufficient inorganic carbon source[J]. Bioresource Technology, 2010, 101(24):9471-9478. doi: 10.1016/j.biortech.2010.07.087
|
7 |
KIMURA Y, ISAKA K, KAZAMA F. Effects of inorganic carbon limitation on anaerobic ammonium oxidation(anammox) activity[J]. Bioresource Technology, 2011, 102(6):4390-4394. doi: 10.1016/j.biortech.2010.12.101
|
8 |
朱彤,梁启煜,谢元华,等. 厌氧氨氧化过程中无机碳对脱氮效能的影响[J]. 东北大学学报:自然科学版,2018,39(2):278-282.
|
|
ZHU Tong, LIANG Qiyu, XIE Yuanhua,et al. Influence of inorganic carbon on nitrogen removal efficiency during the ANAMMOX process[J]. Journal of Northeastern University:Natural Science,2018,39(2):278-282.
|
9 |
OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9):2784-2796. doi: 10.1111/1462-2920.13134
|
10 |
SHU Duntao, ZHANG Baogang, HE Yanling,et al. Abundant and rare microbial sub-communities in anammox granules present contrasting assemblage patterns and metabolic functions in response to inorganic carbon stresses[J]. Bioresource Technology, 2018, 265:299-309. doi: 10.1016/j.biortech.2018.06.022
|
11 |
TANG Chongjian, ZHENG Ping, MAHMOOD Q,et al. Start-up and inhibition analysis of the anammox process seeded with anaerobic granular sludge[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(8):1093. doi: 10.1007/s10295-009-0593-0
|
12 |
LIAO Dexiang, LI Xiaoming, YANG Qi,et al. Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor[J]. Journal of Environmental Sciences, 2008, 20(8):940-944. doi: 10.1016/s1001-0742(08)62190-7
|
13 |
李祥,黄勇,袁怡. HCO3 -浓度对厌氧氨氧化反应器脱氮效能的影响[J]. 环境科学学报,2012,32(2):292-298.
|
|
LI Xiang, HUANG Yong, YUAN Yi. Influence of HCO3 - on nitrogen removal in an ANAMMOX reactor[J]. Acta Scientiae Circumstantiae,2012,32(2):292-298.
|
14 |
YU Hao, LI Jin, DONG Huiyu,et al. Nitrogen removal performance of marine anammox bacteria treating nitrogen-rich saline wastewater under different inorganic carbon doses:High inorganic carbon tolerance and carbonate crystal formation[J]. Bioresource Technology, 2019, 288:121565. doi: 10.1016/j.biortech.2019.121565
|
15 |
ZHANG Wenjie, WANG Dunqiu, JIN Yue. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor[J]. Bioresource Technology, 2018, 250:124-130. doi: 10.1016/j.biortech.2017.11.027
|
16 |
CHEN K F, YEH T Y, KAO C M,et al. Application of nanoscale zero-valent iron(nZVI) to enhance microbial reductive dechlorination of TCE:A feasibility study[J]. Current Nanoscience, 2012, 8(1):55-59. doi: 10.4028/www.scientific.net/msf.694.3
|
17 |
ZHANG Yaobin, AN Xinlei, QUAN Xie. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation[J]. Process Biochemistry, 2011, 46(2):471-476. doi: 10.1016/j.procbio.2010.09.021
|
18 |
GAO Fan, ZHANG Hanmin, YANG Fenglin,et al. The effects of zero-valent iron(ZVI) and ferroferric oxide(Fe 3O 4) on anammox activity and granulation in anaerobic continuously stirred tank reactors(CSTR)[J]. Process Biochemistry, 2014, 49(11):1970-1978. doi: 10.1016/j.procbio.2014.07.019
|
19 |
YAN Yuan, WANG Yayi, WANG Weigang,et al. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition[J]. Water Research, 2019, 153:284-294. doi: 10.1016/j.watres.2019.01.029
|
20 |
KEN D S, SINHA A. Recent developments in surface modification of nano zero-valent iron(nZVI):Remediation,toxicity and environmental impacts[J]. Environmental Nanotechnology,Monitoring & Management, 2020, 14:100344. doi: 10.1016/j.enmm.2020.100344
|
21 |
XU Jiajia, ZHANG Zhengzhe, JI Zhengquan,et al. Short-term effects of nanoscale zero-valent iron(nZVI) and hydraulic shock during high-rate anammox wastewater treatment[J]. Journal of Environmental Management, 2018, 215:248-257. doi: 10.1016/j.jenvman.2018.03.069
|
22 |
GUO Beibei, CHEN Yuanhao, LV Lu,et al. Transformation of the zero valent iron dosage effect on anammox after long-term culture:From inhibition to promotion[J]. Process Biochemistry, 2019, 78:132-139. doi: 10.1016/j.procbio.2019.01.014
|
23 |
REN Longfei, NI Shouqing, LIU Cui,et al. Effect of zero-valent iron on the start-up performance of anaerobic ammonium oxidation(anammox) process[J]. Environmental Science and Pollution Research International, 2015, 22(4):2925-2934. doi: 10.1007/s11356-014-3553-9
|
24 |
ZHANG Jingxin, QU Yiyuan, QI Qiuxian,et al. The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion:A review[J]. Water Research, 2020, 186:116405. doi: 10.1016/j.watres.2020.116405
|
25 |
ERDIM E, YÜCESOY ÖZKAN Z, KURT H,et al. Overcoming challenges in mainstream anammox applications:Utilization of nanoscale zero valent iron(nZVI)[J]. Science of the Total Environment, 2019, 651:3023-3033. doi: 10.1016/j.scitotenv.2018.09.140
|
26 |
ZHANG Zhengzhe, XU Jiajia, SHI Zhijian,et al. Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of anammox sludge[J]. Bioresource Technology, 2017, 243:883-892. doi: 10.1016/j.biortech.2017.07.049
|
27 |
吕冉,李彬,肖盈,等. 铁对废水微生物脱氮的影响研究进展[J]. 化工进展,2020,39(2):709-719.
|
|
Ran LÜ, LI Bin, XIAO Ying,et al. Research progress on the effects of iron on microbiological nitrogen removal in wastewater[J]. Chemical Industry and Engineering Progress,2020,39(2):709-719.
|
28 |
|
|
GUO Qiong, JIN Rencun. Process enhancement of anaerobic ammonium oxidation[J]. Chemical Industry and Engineering Progress, 2014, 33(11):3075-3081. doi: 10.3969/j.issn.1000-6613.2014.11.040
|
29 |
VAN NIFTRIK L, GEERTS W J C, VAN DONSELAAR E G,et al. Combined structural and chemical analysis of the anammoxosome:A membrane-bounded intracytoplasmic compartment in anammox bacteria[J]. Journal of Structural Biology, 2008, 161(3):401-410. doi: 10.1016/j.jsb.2007.05.005
|
30 |
VAN NIFTRIK L, GEERTS W J C, VAN DONSELAAR E G,et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan,glycogen storage,and localization of cytochrome c proteins[J]. Journal of Bacteriology, 2008, 190(2):708-717. doi: 10.1128/jb.01449-07
|
31 |
FEROUSI C, LINDHOUD S, BAYMANN F,et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria[J]. Current Opinion in Chemical Biology, 2017, 37:129-136. doi: 10.1016/j.cbpa.2017.03.009
|
32 |
张黎,胡筱敏,姜彬慧,等. 亚铁离子对厌氧氨氧化反应器脱氮性能的影响[J]. 东北大学学报:自然科学版,2015,36(12):1753-1756.
|
|
ZHANG Li, HU Xiaomin, JIANG Binhui,et al. Effect of iron ions on denitrification performance in anammox reactor[J]. Journal of Northeastern University:Natural Science,2015,36(12):1753-1756.
|
33 |
HUANG Xiaoli, GAO Dawen, PENG Sha,et al. Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors[J]. Journal of Environmental Sciences, 2014, 26(5):1034-1039. doi: 10.1016/s1001-0742(13)60531-8
|
34 |
QIAO Sen, BI Zhen, ZHOU Jiti,et al. Long term effects of divalent ferrous ion on the activity of anammox biomass[J]. Bioresource Technology, 2013, 142:490-497. doi: 10.1016/j.biortech.2013.05.062
|
35 |
FENG Li, LI Jin, MA Haoran,et al. Effect of Fe(Ⅱ) on simultaneous marine Anammox and Feammox treating nitrogen-laden saline wastewater under low temperature:Enhanced performance and kinetics[J]. Desalination, 2020, 478:114287. doi: 10.1016/j.desal.2019.114287
|
36 |
李祥,黄勇,巫川,等. Fe2+和Fe3+对厌氧氨氧化污泥活性的影响[J]. 环境科学,2014,35(11):4224-4229.
|
|
LI Xiang, HUANG Yong, WU Chuan,et al. Effect of Fe2+ and Fe3+ on the activity of ANAMMOX[J]. Environmental Science,2014,35(11):4224-4229.
|
37 |
WANG Haiyue, PENG Ling, MAO Nianjia,et al. Effects of Fe 3+ on microbial communities shifts,functional genes expression and nitrogen transformation during the start-up of Anammox process[J]. Bioresource Technology, 2021, 320:124326. doi: 10.1016/j.biortech.2020.124326
|
38 |
|
|
ZHANG Lei, ZHENG Ping, HU Anhui. Effect of ferrous ion on the performance of an anammox reactor[J]. Acta Scientiae Circumstantiae, 2009, 29(8):1629-1634. doi: 10.3321/j.issn:0253-2468.2009.08.008
|
39 |
袁新明,王电站. 金属离子对厌氧氨氧化污泥脱氮效能影响[J]. 环境污染与防治,2019,41(5):515-519.
|
|
YUAN Xinming, WANG Dianzhan. Effect of metal ions on nitrogen removal efficiency in anammox sludge[J]. Environmental Pollution & Control,2019,41(5):515-519.
|
40 |
LI Jin, FENG Li, BISWAL B K,et al. Bioaugmentation of marine anammox bacteria(MAB)-based anaerobic ammonia oxidation by adding Fe(Ⅲ) in saline wastewater treatment under low temperature[J]. Bioresource Technology, 2020, 295:122292. doi: 10.1016/j.biortech.2019.122292
|
41 |
孟显松,李军,张硕,等. 低温胁迫下Fe2+对厌氧氨氧化脱氮性能影响研究[J]. 水处理技术,2020,46(11):125-128.
|
|
MENG Xiansong, LI Jun, ZHANG Shuo,et al. Study on the effect of Fe2+ on denitrification by anaerobic ammonium oxidation under low temperature stress[J]. Technology of Water Treatment,2020,46(11):125-128.
|
42 |
ZHANG Xiaojing, ZHOU Yue, ZHAO Siyu,et al. Effect of Fe(Ⅱ) in low-nitrogen sewage on the reactor performance and microbial community of an ANAMMOX biofilter[J]. Chemosphere, 2018, 200:412-418. doi: 10.1016/j.chemosphere.2018.02.131
|
43 |
雷欣,闫荣,慕玉洁,等. 铁元素对厌氧氨氧化菌脱氮效能的影响[J]. 化工进展,2021,40(5):2730-2738.
|
|
LEI Xin, YAN Rong, MU Yujie,et al. Effect of iron on nitrogen removal efficiency of anaerobic ammonium oxidation bacteria[J]. Chemical Industry and Engineering Progress,2021,40(5):2730-2738.
|
44 |
MELLOR R B, RONNENBERG J, CAMPBELL W H,et al. Reduction of nitrate and nitrite in water by immobilized enzymes[J]. Nature, 1992, 355(6362):717-719. doi: 10.1038/355717a0
|
45 |
YIN Xin, QIAO Sen, ZHOU Jiti. Using electric field to enhance the activity of anammox bacteria[J]. Applied Microbiology and Biotechnology, 2015, 99(16):6921-6930. doi: 10.1007/s00253-015-6631-0
|
46 |
ZHANG Jingxin, ZHANG Yaobin, LI Yang,et al. Enhancement of nitrogen removal in a novel anammox reactor packed with Fe electrode[J]. Bioresource Technology, 2012, 114:102-108. doi: 10.1016/j.biortech.2012.03.018
|
47 |
YIN Xin, QIAO Sen, ZHOU Jiti,et al. Using three-bio-electrode reactor to enhance the activity of anammox biomass[J]. Bioresource Technology, 2015, 196:376-382. doi: 10.1016/j.biortech.2015.07.096
|
48 |
LIU Zhao, SUN Dezhi, TIAN Haozhong,et al. Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-anammox system[J]. Bioresource Technology, 2019, 285:121311. doi: 10.1016/j.biortech.2019.121311
|
49 |
ZHANG Chi, LI Liang, HU Xiaomin,et al. Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature[J]. Bioresource Technology, 2019, 275:225-231. doi: 10.1016/j.biortech.2018.12.037
|
50 |
ZHANG Chi, LI Liang, WANG Yujia,et al. Enhancement of the ANAMMOX bacteria activity and granule stability through pulsed electric field at a lower temperature〔(16±1) ℃〕[J]. Bioresource Technology, 2019, 292:121960. doi: 10.1016/j.biortech.2019.121960
|
51 |
MOORE R L. Biological effects of magnetic fields:Studies with microorganisms[J]. Canadian Journal of Microbiology, 1979, 25(10):1145-1151. doi: 10.1139/m79-178
|
52 |
LIU Sitong, YANG Fenglin, MENG Fangang,et al. Enhanced anammox consortium activity for nitrogen removal:Impacts of static magnetic field[J]. Journal of Biotechnology, 2008, 138(3/4):96-102. doi: 10.1016/j.jbiotec.2008.08.002
|
53 |
ZHANG Guangming, ZHANG Panyue, GAO Jie,et al. Using acoustic cavitation to improve the bio-activity of activated sludge[J]. Bioresource Technology, 2008, 99(5):1497-1502. doi: 10.1016/j.biortech.2007.01.050
|
54 |
DUAN Xiumei, ZHOU Jiti, QIAO Sen,et al. Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal[J]. Bioresource Technology, 2011, 102(5):4290-4293. doi: 10.1016/j.biortech.2010.12.050
|
55 |
YU Jinjin, CHEN Hui, ZHANG Jue,et al. Enhancement of ANAMMOX activity by low-intensity ultrasound irradiation at ambient temperature[J]. Bioresource Technology, 2013, 142:693-696. doi: 10.1016/j.biortech.2013.05.013
|
56 |
YU Jinjin, CHEN Hui, JI Yuxin,et al. Mechanisms of ultrasound irradiation for enhancing the ANAMMOX process[J]. Separation and Purification Technology, 2014, 130:141-146. doi: 10.1016/j.seppur.2014.04.022
|
57 |
ZHANG Zhengzhe, CHENG Yafei, ZHOU Yuhuang,et al. A novel strategy for accelerating the recovery of an anammox reactor inhibited by copper(Ⅱ):EDTA washing combined with biostimulation via low-intensity ultrasound[J]. Chemical Engineering Journal, 2015, 279:912-920. doi: 10.1016/j.cej.2015.05.081
|