1 |
SUN Lu, GUO Dengkui, LIU Ke,et al. Levels,sources,and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan,China[J]. CATENA, 2019, 175:101-109. doi: 10.1016/j.catena.2018.12.014
|
2 |
SHAHEEN S M, ANTONIADIS V, KWON E,et al. Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils:A case study from the temperate region(Germany) and the arid region(Egypt)[J]. Environmental Pollution, 2020, 262:114312. doi: 10.1016/j.envpol.2020.114312
|
3 |
XIA Shaopan, SONG Zhaoliang, JEYAKUMAR P,et al. A critical review on bioremediation technologies for Cr(Ⅵ)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(12):1027-1078. doi: 10.1080/10643389.2018.1564526
|
4 |
SHAHID M, SHAMSHAD S, RAFIQ M,et al. Chromium speciation,bioavailability,uptake,toxicity and detoxification in soil-plant system:A review[J]. Chemosphere, 2017, 178:513-533. doi: 10.1016/j.chemosphere.2017.03.074
|
5 |
SAHA R, NANDI R, SAHA B. Sources and toxicity of hexavalent chromium[J]. Journal of Coordination Chemistry, 2011, 64(10):1782-1806. doi: 10.1080/00958972.2011.583646
|
6 |
MALAVIYA P, SINGH A. Physicochemical technologies for remediation of chromium-containing waters and wastewaters[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(12):1111-1172. doi: 10.1080/10643380903392817
|
7 |
ACKERLEY D F, GONZALEZ C F, PARK C H,et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli [J]. Applied and Environmental Microbiology, 2004, 70(2):873-882. doi: 10.1128/aem.70.2.873-882.2004
|
8 |
THACKER U, PARIKH R, SHOUCHE Y,et al. Hexavalent chromium reduction by Providencia sp.[J]. Process Biochemistry, 2006, 41(6):1332-1337. doi: 10.1016/j.procbio.2006.01.006
|
9 |
THACKER U, PARIKH R, SHOUCHE Y,et al. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(Ⅵ) contaminated sites[J]. Bioresource Technology, 2007, 98(8):1541-1547. doi: 10.1016/j.biortech.2006.06.011
|
10 |
SILVA B, FIGUEIREDO H, QUINTELAS C,et al. Improved biosorption for Cr(Ⅵ) reduction and removal by Arthrobacter viscosus using zeolite[J]. International Biodeterioration & Biodegradation, 2012, 74:116-123. doi: 10.1016/j.ibiod.2012.05.026
|
11 |
BANERJEE S, MISRA A, CHAUDHURY S,et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses,chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials, 2019, 367:215-223. doi: 10.1016/j.jhazmat.2018.12.038
|
12 |
KARTHIK C, BARATHI S, PUGAZHENDHI A,et al. Evaluation of Cr(Ⅵ) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8,a novel haloalkaliphilic bacterium[J]. Journal of Hazardous Materials, 2017, 333:42-53. doi: 10.1016/j.jhazmat.2017.03.037
|
13 |
LONG Bibo, YE Jien, YE Zhe,et al. Cr(Ⅵ) removal by Penicillium oxalicum SL2:Reduction with acidic metabolites and form transformation in the mycelium[J]. Chemosphere, 2020, 253:126731. doi: 10.1016/j.chemosphere.2020.126731
|
14 |
VAJPAI S, TAYLOR P E, ADHOLEYA A,et al. Chromium tolerance and accumulation in Aspergillus flavus isolated from tannery effluent[J]. Journal of Basic Microbiology, 2020, 60(1):58-71. doi: 10.1002/jobm.201900389
|
15 |
CÁRDENAS-GONZÁLEZ J F, ACOSTA-RODRÍGUEZ I. Hexavalent chromium removal by a Paecilomyces sp. fungal strain isolated from environment[J]. Bioinorganic Chemistry and Applications, 2010, 2010:676243. doi: 10.1155/2010/676243
|
16 |
RUSINOVA-VIDEVA S, NACHKOVA S, ADAMOV A,et al. Antarctic yeast Cryptococcus laurentii(AL 65):Biomass and exopolysaccharide production and biosorption of metals[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(5):1372-1379. doi: 10.1002/jctb.6321
|
17 |
HE Baoyan, YIN Hua, YANG Feng,et al. Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis and Candida lipolytica [J]. Journal of Central South University, 2012, 19(6):1693-1701. doi: 10.1007/s11771-012-1195-y
|
18 |
ELYSTIA S, EDWARD H S, PUTRI A E. Removal of chromium(Ⅵ) and chromium(Ⅲ) by using chlorella sp. immobilized at electroplating wastewater[J]. IOP Conference Series:Earth and Environmental Science, 2020, 515(1):012078. doi: 10.1088/1755-1315/515/1/012078
|
19 |
王岩,代群威,陈国华,等. 藻类吸附剂对六价铬的吸附特性[J]. 环境工程学报,2014,8(5):1769-1774.
|
|
WANG Yan, DAI Qunwei, CHEN Guohua,et al. Cr(Ⅵ) adsorption characteristic of alga adsorbent[J]. Chinese Journal of Environmental Engineering,2014,8(5):1769-1774.
|
20 |
CHEN J M, HAO O J. Microbial chromium(Ⅵ) reduction[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(3):219-251. doi: 10.1080/10643389891254214
|
21 |
WANG P C, MORI T, KOMORI K,et al. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Applied and Environmental Microbiology, 1989, 55(7):1665-1669. doi: 10.1128/aem.55.7.1665-1669.1989
|
22 |
MALAVIYA P, SINGH A. Bioremediation of chromium solutions and chromium containing wastewaters[J]. Critical Reviews in Microbiology, 2016, 42(4):607-633. doi: 10.3109/1040841x.2014.974501
|
23 |
THATOI H,DAS S, MISHRA J,et al. Bacterial chromate reductase,a potential enzyme for bioremediation of hexavalent chromium:A review[J]. Journal of Environmental Management, 2014, 146:383-399. doi: 10.1016/j.jenvman.2014.07.014
|
24 |
王春,童辉,华健,等. 铬取代针铁矿异化铁还原过程及铬的环境行为研究[J]. 生态环境学报,2020,29(9):1883-1889.
|
|
WANG Chun, TONG Hui, HUA Jian,et al. Dissimilatory reduction of Cr-substituted goethite and its effect on Cr behavior[J]. Ecology and Environmental Sciences,2020,29(9):1883-1889.
|
25 |
LI Xilin, FAN Ming, LIU Ling,et al. Treatment of high-concentration chromium-containing wastewater by sulfate-reducing bacteria acclimated with ethanol[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2019, 80(12):2362-2372. doi: 10.2166/wst.2020.057
|
26 |
CHARDIN B, GIUDICI-ORTICONI M T, DE LUCA G,et al. Hydrogenases in sulfate-reducing bacteria function as chromium reductase[J]. Applied Microbiology and Biotechnology, 2003, 63(3):315-321. doi: 10.1007/s00253-003-1390-8
|
27 |
ZAWADZKA A M, CRAWFORD R L, PASZCZYNSKI A J. Pyridine-2,6-bis(thiocarboxylic acid) produced by pseudomonas stutzeri KC reduces chromium(Ⅵ) and precipitates mercury,cadmium,lead and arsenic[J]. BioMetals, 2007, 20(2):145-158. doi: 10.1007/s10534-006-9022-2
|
28 |
NAYAK S, RANGABHASHIYAM S, BALASUBRAMANIAN P,et al. A review of chromite mining in Sukinda Valley of India:Impact and potential remediation measures[J]. International Journal of Phytoremediation, 2020, 22(8):804-818. doi: 10.1080/15226514.2020.1717432
|
29 |
RAHMAN Z, SINGH V P. Bioremediation of toxic heavy metals(THMs) contaminated sites:Concepts,applications and challenges[J]. Environmental Science and Pollution Research International, 2020, 27(22):27563-27581. doi: 10.1007/s11356-020-08903-0
|
30 |
GU Yanling, XU Weihua, LIU Yunguo,et al. Mechanism of Cr(Ⅵ) reduction by Aspergillus niger:Enzymatic characteristic,oxidative stress response,and reduction product[J]. Environmental Science and Pollution Research International, 2015, 22(8):6271-6279. doi: 10.1007/s11356-014-3856-x
|
31 |
VENDRUSCOLO F, ROCHA FERREIRA G L DA, ANTONIOSI FILHO N R. Biosorption of hexavalent chromium by microorganisms[J]. International Biodeterioration & Biodegradation, 2017, 119:87-95. doi: 10.1016/j.ibiod.2016.10.008
|
32 |
ASRI M, ELABED S, ELABED A,et al. Effect of putrescine on cell surface properties of Wickerhamomyces anomalus:Performance on Cr(Ⅵ) biosorption[J]. Environmental Engineering Science, 2019, 36(4):396-404. doi: 10.1089/ees.2018.0454
|
33 |
PUSHKAR B, SEVAK P, PARAB S,et al. Chromium pollution and its bioremediation mechanisms in bacteria:A review[J]. Journal of Environmental Management, 2021, 287:112279. doi: 10.1016/j.jenvman.2021.112279
|
34 |
FANG Ge, LI Weifeng, SHEN Xiaomei,et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria[J]. Nature Communications, 2018, 9:129. doi: 10.1038/s41467-017-02502-3
|
35 |
HAN Xu, WONG Y S, WONG M H,et al. Biosorption and bioreduction of Cr(Ⅵ) by a microalgal isolate, Chlorella miniata [J]. Journal of Hazardous Materials, 2007, 146(1/2):65-72. doi: 10.1016/j.jhazmat.2006.11.053
|
36 |
COLLA L M, DAL’MAGRO C, DE ROSSI A,et al. Potential of live Spirulina platensis on biosorption of hexavalent chromium and its conversion to trivalent chromium[J]. International Journal of Phytoremediation, 2015, 17(9):861-868. doi: 10.1080/15226514.2014.964846
|
37 |
JAAFARI J, YAGHMAEIAN K. Optimization of heavy metal biosorption onto freshwater algae( Chlorella coloniales) using response surface methodology(RSM)[J]. Chemosphere, 2019, 217:447-455. doi: 10.1016/j.chemosphere.2018.10.205
|
38 |
LEBRON Y A R, MOREIRA V R, SANTOS L V S. Studies on dye biosorption enhancement by chemically modified Fucus vesiculosus, Spirulina maxima and Chlorella pyrenoidosa algae [J]. Journal of Cleaner Production, 2019, 240:118197. doi: 10.1016/j.jclepro.2019.118197
|
39 |
DIXIT R,WASIULLAH, MALAVIYA D,et al. Bioremediation of heavy metals from soil and aquatic environment:An overview of principles and criteria of fundamental processes[J]. Sustainability, 2015, 7(2):2189-2212. doi: 10.3390/su7022189
|
40 |
OJUEDERIE O B, BABALOLA O O. Microbial and plant-assisted bioremediation of heavy metal polluted environments:A review[J]. International Journal of Environmental Research and Public Health, 2017, 14(12):1504. doi: 10.3390/ijerph14121504
|
41 |
REDONDO-GÓMEZ S, MATEOS-NARANJO E, VECINO-BUENO I,et al. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis [J]. Journal of Hazardous Materials, 2011, 185(2/3):862-869. doi: 10.1016/j.jhazmat.2010.09.101
|
42 |
|
|
LIU Ziqi, WANG Fang, WANG Aili. Research on the adsorption of Cr(Ⅵ) by modified submerged plant Potamogeton crispus [J]. Industrial Water Treatment, 2019, 39(3):38-41. doi: 10.11894/1005-829x.2019.39(3).038
|
43 |
张铁军,李博,韩剑宏,等. 磁性改性玉米秸秆材料吸附铬的性能及机理研究[J]. 工业水处理,2020,40(12):100-105.
|
|
ZHANG Tiejun, LI Bo, HAN Jianhong,et al. Study on adsorption performance and mechanism of chromium on magnetic modified corn stalk[J]. Industrial Water Treatment,2020,40(12):100-105.
|
44 |
JABEEN R, AHMAD A, IQBAL M. Phytoremediation of heavy metals:Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4):339-364. doi: 10.1007/s12229-009-9036-x
|
45 |
GAO Jie, WU Shimin, LIU Ying,et al. Characterization and transcriptomic analysis of a highly Cr(Ⅵ)-resistant and -reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila DSM14405T[J]. Environmental Pollution, 2020, 263:114622. doi: 10.1016/j.envpol.2020.114622
|
46 |
AHEMAD M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria[J]. Journal of Genetic Engineering and Biotechnology, 2015, 13(1):51-58. doi: 10.1016/j.jgeb.2015.02.001
|
47 |
KIM Y,ROH Y. Environmental application of biogenic magnetite nanoparticles to remediate chromium(Ⅲ/Ⅵ)-contaminated water[J]. Minerals, 2019, 9(5):260. doi: 10.3390/min9050260
|
48 |
MUKHERJEE T, CHAKRABORTY S, BISWAS A A,et al. Bioremediation potential of arsenic by non-enzymatically biofabricated silver nanoparticles adhered to the mesoporous carbonized fungal cell surface of Aspergillus foetidus MTCC8876[J]. Journal of Environmental Management, 2017, 201:435-446. doi: 10.1016/j.jenvman.2017.06.030
|
49 |
K V G R, ARGULWAR S, SUDAKARAN S V,et al. Nano-bio sequential removal of hexavalent chromium using polymer-nZVI composite film and sulfate reducing bacteria under anaerobic condition[J]. Environmental Technology & Innovation, 2018, 9:122-133. doi: 10.1016/j.eti.2017.11.006
|